por Rose » Seg Set 08, 2008 22:07
OLá!!
Não estou sabendo como fazer este problema sobre polinômios. Gostaria que vocês me ajudassem.
Questão: Determine o polinômio com coeficientes inteiros que tenha raiz de 3 + raiz 2 como uma de suas raizes.
Obrigada
-
Rose
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Qui Mai 15, 2008 14:13
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Set 09, 2008 21:33
Olá
Rose!
Pelo
teorema da decomposição, todo polinômio

de grau

(

)

pode ser decomposto de maneira única em

fatores do primeiro grau.
Desta forma, podemos reescrevê-lo assim:

onde

são as raízes de

.
Sendo assim, se

é raiz, então:

divide o polinômio.
Em outras palavras,

é múltiplo de

.
Como sabemos apenas esta raiz, uma alternativa é supor

e avaliarmos o produto:
![P' = \left[ x-\left( \sqrt{3}+\sqrt{2} \right) \right] \cdot \left[ x+\left( \sqrt{3}+\sqrt{2} \right) \right] P' = \left[ x-\left( \sqrt{3}+\sqrt{2} \right) \right] \cdot \left[ x+\left( \sqrt{3}+\sqrt{2} \right) \right]](/latexrender/pictures/ef23a12ce403dc05f3383c65372c30ff.png)
sendo o outro fator o conjugado, pois estamos em busca de coeficientes inteiros.
Faça a distributiva e caso não obtenha coeficientes inteiros, multiplique novamente por um fator "conjugado" ao polinômio atual, visando eliminar as raízes dos coeficientes.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Rose » Qua Set 10, 2008 11:50
OLá!!
Obrigadaaa!!!
Depois desta explicação, consegui entender o teorema da decomposição e sua utilidade. Resolvi e cheguei a um polinômio de grau 4. Valeu genteee!!!!
-
Rose
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Qui Mai 15, 2008 14:13
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Polinômios] Grau do Polinômios e +
por Warioboy » Ter Mai 29, 2012 15:06
- 5 Respostas
- 7665 Exibições
- Última mensagem por Cleyson007

Dom Jun 03, 2012 16:18
Polinômios
-
- Polinômios - 3
por DanielFerreira » Ter Set 22, 2009 13:59
- 3 Respostas
- 2960 Exibições
- Última mensagem por DanielFerreira

Qui Fev 10, 2011 09:26
Polinômios
-
- Polinômios - 2
por DanielFerreira » Ter Set 22, 2009 14:00
- 1 Respostas
- 3172 Exibições
- Última mensagem por thadeu

Seg Nov 02, 2009 11:47
Polinômios
-
- Polinômios
por DanielFerreira » Ter Set 22, 2009 14:01
- 2 Respostas
- 2354 Exibições
- Última mensagem por DanielFerreira

Qui Nov 19, 2009 17:59
Polinômios
-
- Polinômios - 4
por DanielFerreira » Ter Set 22, 2009 14:04
- 4 Respostas
- 3889 Exibições
- Última mensagem por DanielFerreira

Qua Fev 09, 2011 13:39
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.