• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Nucleo e imagem

Nucleo e imagem

Mensagempor baianinha » Sex Jan 21, 2011 21:00

Gostaria de saber como se calcula o nucleo e a imagem de uma transformação Linear?

Alguém poderia mim ajudar?

Assim...tenho a lei que é o primeiro passo...Mas e ai, faço o q depois disso?

Exemplo, q peguei nesse forum mesmo...lei é ( x-y;5x-8y;-5x +10y)
sei q agora monto um sistema e daí??? vou para onde?? alguém poderia mim ajudar e a imagem fica como?
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Nucleo e imagem

Mensagempor LuizAquino » Sáb Jan 22, 2011 11:44

Olá Baianinha,

Vejamos um exemplo. Vamos considerar a transformação linear T:\mathbb{R}^2 \to \mathbb{R}^3 definida por T(x,\,y) = (x-y,\, 5x-8y,\, -5x +10y).

O núcleo (ou kernel) dessa transformação linear é definido como:
N(T) = \{ v\in \mathbb{R}^2 \mid \, T(v)=0\}
Portanto, precisamos resolver a equação:

T(x,\, y) = 0

(x-y,\, 5x-8y,\, -5x +10y) = 0

De onde obtemos o sistema:
\begin{cases}
x - y = 0 \\
5x - 8y = 0 \\
-5x + 10y = 0
\end{cases}

A única solução desse sistema é x=0 e y=0. Portanto o núcleo dessa transformação tem apenas um elemento, que é o (0, 0). Ou seja, diremos que:
N(T)=\{ (0,\, 0) \}


A imagem dessa transformação linear é definido como:
Img(T) = \{ T(v) \mid v \in \mathbb{R}^2\}

Para determinar a imagem podemos determinar uma base para a mesma.

Nesse exemplo, todos os elementos da imagem tem o formato (x-y, 5x-8y, -5x +10y). Note que qualquer elemento dessa imagem pode ser escrito como combinação linear dos vetores (1, 5, -5) e (-1, -8, 10):
(x-y, 5x-8y, -5x +10y) = x(1, 5, -5) + y(-1, -8, 10).

Portanto, o conjunto {(1, 5, -5), (-1, -8, 10)} gera a imagem. Se esse conjunto for L.I., então ele formará uma base para a imagem.

De fato, ele é L.I., pois a equação
k(1, 5, -5) + m(-1, -8, 10) = 0,
só possui uma única solução que é k=m=0.

Sendo assim, temos que:
Img(T) = \{k(1, 5, -5) + m(-1, -8, 10) \mid k,\, m \in \mathbb{R}\}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59