• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Nucleo e imagem

Nucleo e imagem

Mensagempor baianinha » Sex Jan 21, 2011 21:00

Gostaria de saber como se calcula o nucleo e a imagem de uma transformação Linear?

Alguém poderia mim ajudar?

Assim...tenho a lei que é o primeiro passo...Mas e ai, faço o q depois disso?

Exemplo, q peguei nesse forum mesmo...lei é ( x-y;5x-8y;-5x +10y)
sei q agora monto um sistema e daí??? vou para onde?? alguém poderia mim ajudar e a imagem fica como?
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Nucleo e imagem

Mensagempor LuizAquino » Sáb Jan 22, 2011 11:44

Olá Baianinha,

Vejamos um exemplo. Vamos considerar a transformação linear T:\mathbb{R}^2 \to \mathbb{R}^3 definida por T(x,\,y) = (x-y,\, 5x-8y,\, -5x +10y).

O núcleo (ou kernel) dessa transformação linear é definido como:
N(T) = \{ v\in \mathbb{R}^2 \mid \, T(v)=0\}
Portanto, precisamos resolver a equação:

T(x,\, y) = 0

(x-y,\, 5x-8y,\, -5x +10y) = 0

De onde obtemos o sistema:
\begin{cases}
x - y = 0 \\
5x - 8y = 0 \\
-5x + 10y = 0
\end{cases}

A única solução desse sistema é x=0 e y=0. Portanto o núcleo dessa transformação tem apenas um elemento, que é o (0, 0). Ou seja, diremos que:
N(T)=\{ (0,\, 0) \}


A imagem dessa transformação linear é definido como:
Img(T) = \{ T(v) \mid v \in \mathbb{R}^2\}

Para determinar a imagem podemos determinar uma base para a mesma.

Nesse exemplo, todos os elementos da imagem tem o formato (x-y, 5x-8y, -5x +10y). Note que qualquer elemento dessa imagem pode ser escrito como combinação linear dos vetores (1, 5, -5) e (-1, -8, 10):
(x-y, 5x-8y, -5x +10y) = x(1, 5, -5) + y(-1, -8, 10).

Portanto, o conjunto {(1, 5, -5), (-1, -8, 10)} gera a imagem. Se esse conjunto for L.I., então ele formará uma base para a imagem.

De fato, ele é L.I., pois a equação
k(1, 5, -5) + m(-1, -8, 10) = 0,
só possui uma única solução que é k=m=0.

Sendo assim, temos que:
Img(T) = \{k(1, 5, -5) + m(-1, -8, 10) \mid k,\, m \in \mathbb{R}\}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: