• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lei de definição de uma transformação linear!

Lei de definição de uma transformação linear!

Mensagempor Manoella » Qui Jan 20, 2011 16:16

Alguém por favor urgente ajude mim a descobrir isso aki
T: {R}^{2}\rightarrow{R}^{3}; tal que T(2,1)= (1,2,0) e T (1,1)=(0,-3,5)
Como faço para descobrir a lei de definição de T?
Manoella
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Dez 16, 2010 09:30
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Lei de definição de uma transformação linear!

Mensagempor Renato_RJ » Qui Jan 20, 2011 22:20

Manoella e pessoal, cometi um erro ao responder o tópico, mas o colega Luiz postou a resposta correta, por isso resolvi editar a mensagem para não causar confusão em quem busca a resposta.

Abraços,
Renato.
Editado pela última vez por Renato_RJ em Sex Jan 21, 2011 11:20, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Lei de definição de uma transformação linear!

Mensagempor LuizAquino » Sex Jan 21, 2011 09:31

Olá Manoella e Renato_RJ,

O colega Renato_RJ equivocou-se, pois os vetores (2,1) e (1,1) formam sim uma base para \mathbb{R}^2. Note que a equação
a_{1} \cdot (2,1) + a_{2} \cdot (1,1) = (0,0)
tem como única solução a_1=a_2=0, significando portanto que os vetores são L.I. Mas, dois vetores L.I. no espaço vetorial \mathbb{R}^2 sempre formam uma base para o mesmo.

Sendo assim, primeiro vamos escrever um vetor (x,y) qualquer em função dos vetores da base. Ou seja, vamos resolver a equação (nas incógnitas k e m):
k \cdot (2,1) + m \cdot (1,1) = (x,y)

De onde obtemos o sistema:
\begin{cases}
2k + m = x \\
k + m = y
\end{cases}

A solução desse sistema é: k=x-y e m=2y-x. Portanto, podemos escrever qualquer vetor (x,y) em função da base da seguinte forma:
(x, y) = (x-y)(2, 1) + (2y-x)(1, 1)

Considerando que T é transformação linear, podemos fazer:
T(x, y) = T((x-y)(2, 1) + (2y-x)(1, 1))
T(x, y) = (x-y)T(2, 1) + (2y-x)T(1, 1)

Substituindo T(2, 1) e T(1, 1) dados:
T(x, y) = (x-y)(1, 2, 0) + (2y-x)(0, -3, 5)

Fazendo as contas, obtemos:
T(x, y)=(x-y, 5x-8y, -5x+10y)

Para conferir a resposta, basta você calcular T(2, 1) e T(1, 1):
T(2,\, 1)=(2-1,\, 5\cdot 2 - 8\cdot 1,\, -5 \cdot 2+10\cdot 1) = (1,\, 2,\, 0)
T(1,\, 1)=(1-1,\, 5\cdot 1 - 8\cdot 1,\, -5 \cdot 1+10\cdot 1) = (0,\, -3,\, 5)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Lei de definição de uma transformação linear!

Mensagempor Renato_RJ » Sex Jan 21, 2011 11:18

Opa, muito grato Luiz !!!

Agora que eu vi o meu erro... É isso que dá fazer contas na madrugada... kkkkkkkkkkk.........

Valeu mesmo Luiz, vou editar o meu post...

Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}