• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Urgente: Derivadas

Urgente: Derivadas

Mensagempor ARCS » Ter Jan 18, 2011 18:22

Estou com dificuldade na resolução dessa derivada.

Dada f (x) =\sqrt[3]{\frac{x}{x^3+1}}

Calcule a f´(x)

Incialmente eu transformei a fração em produto porque é bem mais prático usar a regra do produto ao invés da do quociente.

Logo, f (x) =\sqrt[3]{\frac{x}{x^3+1}} = {x}^{1/3}{(x^3+1)}^{-1/3}

Combinado a regra do produto com a regra da cadeia, obtemos:

Aplicando a regra do produto, temos:

f'(x) = {x}^{1/3}{D}_{x}\left{(x^3+1)}^{-1/3} + {D}_{x}({x}^{1/3})  {(x^3-1)}^{-1/3}

Aplicando a regra da cadeia, temos:

f'(x) = {x}^{1/3}[\frac{-1}{3}{(x^3+1)}^{-4/3}(3x^2)] + [ \frac{1}{3}{x}^{-2/3}]{(x^3+1)}^{-1/3}

Meu professor disse que até aí esta correto, basta agora colocar algum termo em evidência para obter

\frac{1-2x^3}{{3x}^{2/3}{(x^3+1)}^{4/3}}

Mas não estou conseguindo.

Favor explicar detalhadamente
Editado pela última vez por ARCS em Qua Jan 19, 2011 15:56, em um total de 1 vez.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Urgente: Derivadas

Mensagempor Renato_RJ » Ter Jan 18, 2011 20:11

Eu fiz uma abordagem diferente da tua, veja:

f(x) = \sqrt[3]{\frac{x}{x^3+1}}

Fazendo \frac{x}{x^3+1} = u temos:

\frac{d u^{2/3}}{du} \Rightarrow \, \frac{1}{3 \cdot \sqrt [3] {u^2}} \cdot u`

Fazendo a derivada de u, teremos:

\frac {d (\frac{x}{x^3+1})}{dx}

Agora usarei a regra do quociente chamando de u = x e v = x^3 + 1 teremos:

\frac{ v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

Logo:

\frac{ \frac{x^3+1 - 3\cdot x^3}{(x^3+1)^2}}{3 \cdot (\frac{x}{(x^3+1)})^{2/3}}

Com uma básica manipulação teremos:

\frac{1 - 2\cdot x^3}{3 \cdot (\frac{x}{x^3+1})^{2/3} \cdot (x^3+1)^2}

Resolvendo o denominador, teremos:

3 \cdot x^{2/3} \cdot \frac{(x^3+1)^2}{(x^3+1)^{2/3}} \Rightarrow \, 3\cdot x^{2/3} \cdot (x^3+1)^{4/3}

O que nos leva a resposta:

\frac{1 - 2\cdot x^3}{3 \cdot x^{2/3} \cdot (x^3+1)^{4/3}}

Eu acho que está certo, mas como sou humano, posso ter errado em algum lugar, se alguém puder confirmar essas contas ficarei imensamente grato.

Abraços,
Renato
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Urgente: Derivadas

Mensagempor ARCS » Qua Jan 19, 2011 18:20

Valew pela resposta, mais ainda não entendi.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: