• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações

Equações

Mensagempor douglasjro » Qui Jan 13, 2011 12:20

(UFG) - Para que a soma das raízes da equação (k-2)x^2-3kx+1=0 seja igual ao seu produto devemos ter?
Resposta:k=\frac{1}{3}
Obriagdo.
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando

Re: Equações

Mensagempor VtinxD » Qui Jan 13, 2011 14:45

Assim como no seu outro post ,esse exercicio é uma questão que envolve as relações de soma e produto da equação do segundo grau,onde:
a+b=-\frac{-3k}{k-2} e a.b =\frac{1}{k-2}.Sua forma mais geral seria:
Para toda equação da forma a{x}^{2}+bx+c=0 ,vale as relações {r}_{1}+{r}_{2}=-\frac{b}{a} e {r}_{1}.{r}_{2}=\frac{c}{a} se e somente se {r}_{1} e {r}_{2} são raizes da equação.
Estas relações fazem parte das relações de Girard.
Espero ter ajudado.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: Equações

Mensagempor douglasjro » Sex Jan 14, 2011 13:27

Muito obrigado consegui resolver. :y:
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.