• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor OtavioBonassi » Dom Jan 09, 2011 23:40

"Se f: |R \rightarrow |R é uma função que satisfaz f(0)=0 e \lim_{x\rightarrow0}\frac{f(x)}{x^2} = 5 , então f ' (0) vale :

a)0
b)1
c)5
d)10
e)25

"

Tentei já fazer o óbvio mas só consegui descobrir que f '' (0) = 10 haha , ja tentei também separar tipo limite de \frac {f(x)}{x} vezes 1/x , mas limite de 1/x pra x tendendo a 0 nao existe né ,os limites laterais dão - infinito e + infinito ... então fiquei sem saber o que fazer ,por isso postei.
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Limite

Mensagempor Neperiano » Qui Out 27, 2011 15:08

Ola

Não dá para ver a função, pode arrumar ela ou postar denovo

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Out 27, 2011 17:15

Por definição de derivadas, sabemos que:

f^\prime(0) = \lim_{x\to 0}\frac{f(x)-f(0)}{x-0}

Já que f(0)=0, temos que:

f^\prime(0) = \lim_{x\to 0}\frac{f(x)}{x}

Multiplicando tanto o numerador quanto o denominador por x:

f^\prime(0) = \lim_{x\to 0}\frac{xf(x)}{x^2}

Mas isso é o mesmo que:

f^\prime(0) = \left(\lim_{x\to 0}x\right)\cdot \left(\lim_{x\to 0}\frac{f(x)}{x^2}\right)

Já que \lim_{x\to 0}\frac{f(x)}{x^2} = 5, temos que:

f^\prime(0) = 0 \cdot 5 = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: