por Bruno Pinheiro » Dom Dez 26, 2010 22:22
Olá, eu tentei resolver este exercício e não cheguei na resposta correta. Não sei se o gabarito está incorreto ou eu errei na resolução. Alguém pode me dar uma orientação?
![\sqrt[]{x+2}=4-x \sqrt[]{x+2}=4-x](/latexrender/pictures/4fbd2c3dbeecf1d3e8f10091254626c0.png)
a) 0 raiz real.
b) apenas 1 raiz real, negativa.
c) apenas 1 raiz real, positiva. (gabarito)
d) 2 raízes reais, de sinais contrários.
e) 2 raízes reais, de sinais iguais. (minha opção)
Eu propus a seguinte solução:
![{(\sqrt[]{x+2} \right))}^{2}={(4-x)}^{2} \Rightarrow x+2={4}^{2}-2.4.x+{(-x)}^{2} \Rightarrow 16-8x+{x}^{2}-x-2=0 \Rightarrow {x}^{2}-9x+14=0
\Delta={b}^{2}-4.a.c \Rightarrow \Delta={(-9)}^{2} -4.1.14=25
x=(-(-9) - \sqrt[]{25})/2.1=(9-5)/2=4/2=2 {(\sqrt[]{x+2} \right))}^{2}={(4-x)}^{2} \Rightarrow x+2={4}^{2}-2.4.x+{(-x)}^{2} \Rightarrow 16-8x+{x}^{2}-x-2=0 \Rightarrow {x}^{2}-9x+14=0
\Delta={b}^{2}-4.a.c \Rightarrow \Delta={(-9)}^{2} -4.1.14=25
x=(-(-9) - \sqrt[]{25})/2.1=(9-5)/2=4/2=2](/latexrender/pictures/8f45a15d734117f4a60b0855686c8c12.png)
ou
![x=(-(-9)+\sqrt[]{25})2.1=(9+5)/2=14/2=7 x=(-(-9)+\sqrt[]{25})2.1=(9+5)/2=14/2=7](/latexrender/pictures/22eb2b812f8ac677308b4f5c74aa5e7b.png)
-
Bruno Pinheiro
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Dez 26, 2010 21:18
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
por Molina » Seg Dez 27, 2010 20:46
Boa noite, Bruno.
Substitua as duas raízes encontradas e veja se as duas satisfazem a igualdade.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Bruno Pinheiro » Ter Dez 28, 2010 01:01
Obrigado pela orientação, Molina. Sim, satisfazem. Portanto, o gabarito está incorreto mesmo.
Tenha uma boa-noite!
-
Bruno Pinheiro
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Dez 26, 2010 21:18
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do 1º Grau - Como montar a equação
por macedo1967 » Sáb Out 07, 2017 12:53
- 1 Respostas
- 7898 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:17
Equações
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3273 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação do 1 Grau
por luanxd » Ter Jan 26, 2010 00:06
- 3 Respostas
- 5384 Exibições
- Última mensagem por Cleyson007

Qua Jan 27, 2010 20:40
Polinômios
-
- equação do 2º grau
por juniorthai » Seg Fev 08, 2010 12:05
- 2 Respostas
- 11633 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 06, 2010 20:48
Trigonometria
-
- equação do 2º grau
por juniorthai » Qui Fev 11, 2010 08:15
- 6 Respostas
- 8101 Exibições
- Última mensagem por lulopes

Sex Dez 08, 2017 20:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.