por carlosvinnicius » Seg Dez 27, 2010 01:08
Comecei a estudar derivadas agora e sempre que é pra derivar uma fração tenho problemas =s Alguém pode me explicar como deriva

Agradeço desde já!
A resposta é

-
carlosvinnicius
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Dez 17, 2010 14:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
-
por Moura » Seg Dez 27, 2010 12:29
Regra do quociente

P = NP
-
Moura
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Dez 13, 2010 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por carlosvinnicius » Seg Dez 27, 2010 13:11
Tem como resolver a questão pra mim por essa regra explicando passo-a-passo? Eu ainda não entendi direito... obrigado pela resposta Moura!
-
carlosvinnicius
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Dez 17, 2010 14:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
-
por Moura » Seg Dez 27, 2010 14:00
Editado pela última vez por
Moura em Seg Dez 27, 2010 14:35, em um total de 1 vez.
P = NP
-
Moura
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Dez 13, 2010 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema envolvendo derivadas.
por arthurvct » Sex Mai 03, 2013 20:16
- 4 Respostas
- 2881 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Problema de otimização - Derivadas
por Napiresilva » Seg Out 10, 2016 15:21
- 1 Respostas
- 3201 Exibições
- Última mensagem por adauto martins

Qui Out 13, 2016 17:07
Cálculo: Limites, Derivadas e Integrais
-
- Problema max e mins ( aplicações de derivadas )
por Nandodtx » Dom Mai 29, 2011 00:17
- 11 Respostas
- 6893 Exibições
- Última mensagem por LuizAquino

Seg Mai 30, 2011 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Problema com prova: f par --> f' ímpar
por Imscatman » Qui Nov 17, 2011 14:04
- 2 Respostas
- 4736 Exibições
- Última mensagem por Imscatman

Sáb Nov 19, 2011 08:40
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS PARCIAIS/GRADIENTE] Problema.
por phsalves » Qua Dez 10, 2014 20:24
- 6 Respostas
- 7820 Exibições
- Última mensagem por adauto martins

Qua Dez 17, 2014 15:43
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.