• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quero saber dessa integral

Quero saber dessa integral

Mensagempor baianinha » Qui Dez 16, 2010 12:35

a)\int_{2}^{1}{xe}^{-x^2 +1}dx



b)F{e}^{x}cos\left(\frac{x}{2} \right)dx



c)F{e}^{at}sen(bt)dt



Por favor alguém poderia mim ajudar estou precisando muito entender! :idea:
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Quero saber dessa integral

Mensagempor Moura » Qui Dez 16, 2010 14:08

a) u=-x^2+1 => du/dx= -2x => dx=du/-2x

\int_{2}^{1}xe^{-x^2+1}dx =

\int_{2}^{1}xe^udx = \int_{2}^{1}xe^u \frac{du}{-2x} = \frac{-1}{2}\int_{2}^{1}e^udu =

\frac{-1}{2}e^{-x^2+1}]_{2}^{1} = \frac{-e^{-x^2+1}}{2}]_{2}^{1} = \frac{-e^{-1+1}}{2}-(\frac{-e^{-4+1}}{2}) =

\frac{-1}{2}+\frac{e^{-3}}{2} :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.