• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funçao! (:

funçao! (:

Mensagempor lizbortolli » Sex Nov 19, 2010 23:50

não estou conseguindo fazer essa conta, me ajudem, obrigada

Curiosamente, observou-se que o número de árvores plantadas em certo município podia ser estimado pela lei , em que t corresponde ao respectivo mês de plantio das N árvores. Se para obtém-se o número de árvores plantadas em maio de 2001, em que mês o número de árvores plantadas foi igual a nove vezes o número das plantadas em julho de 2001?
lizbortolli
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 19, 2010 23:44
Formação Escolar: ENSINO MÉDIO
Área/Curso: agronomia
Andamento: cursando

Re: funçao! (:

Mensagempor Molina » Sáb Nov 20, 2010 12:55

Não está faltando nada nesse enunciado?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.