• Anúncio Global
    Respostas
    Exibições
    Última mensagem

preciso de ajuda neste problema

preciso de ajuda neste problema

Mensagempor flaviano » Qui Nov 18, 2010 23:41

Ja tentei de tudo ai só num sei se num soube fazer tentei distribuição binomial mais num consegui..
c alguem poder ajudar quero entender isso...
Anexos
Sem Título-1.jpg
flaviano
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 07, 2010 12:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: preciso de ajuda neste problema

Mensagempor alexandre32100 » Sex Nov 19, 2010 14:03

Logística (L)
40 alunos - 18 rapazes e 22 moças;
Análise de Sitemas (A):
36 alunos - 12 rapazes e 24 moças;

No total temos \dbinom{40+36}{2}=\dfrac{76\cdot75}{2}=2850 escolhas.
Podemos escolher:
  • um rapaz de L e uma moça de A;
    \dfrac{18}{40}\times\dfrac{24}{36}=\dfrac{3}{10}
  • uma moça de L e um rapaz de A.
    \dfrac{22}{40}\times\dfrac{12}{36}=\dfrac{11}{60}

\dfrac{3}{10}+\dfrac{11}{60}=\dfrac{29}{60} \text{ (A)}
alexandre32100
 

Re: preciso de ajuda neste problema

Mensagempor flaviano » Sex Nov 19, 2010 23:37

olá cara fico grato mais num consegui entende a resolução dele

como vc chegou ao resultado eu fiz exatamente igual e num seguei ao resultado séra q tive algum erro na hora de calcular explique um pouco melhor agradeço a paciencia..
flaviano
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 07, 2010 12:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: preciso de ajuda neste problema

Mensagempor alexandre32100 » Sáb Nov 20, 2010 19:28

Assim:
As possibilidades de escolher um rapaz e uma moça são:
  • escolher um rapaz da turma de Logística e uma moça de Análise;
  • ou escolher um moça da turma de Logística e uma rapaz de Análise;

Quando você quer que dois eventos aconteçam simultaneamente, um com a probabilidade de acontecer p_1 e outro com p_2, a probabilidade de que isto aconteça é de p_1\times p_2, isto explica esta parte
alexandre32100 escreveu:Podemos escolher:
  • um rapaz de L e uma moça de A;
    \dfrac{18}{40}\times\dfrac{24}{36}=\dfrac{3}{10}
  • uma moça de L e um rapaz de A.
    \dfrac{22}{40}\times\dfrac{12}{36}=\dfrac{11}{60}
.
Os professores geralmente explicam a probabilidade da forma p=\dfrac{\text{quero}}{\text{tenho}}, no caso, por exemplo de escolher uma moça na turma de logística, eu tenho 40 alunos, mas quero apenas as 22 moças, portanto a probabilidade é de \dfrac{22}{40}.

Ah! Desconsidere a parte que diz
alexandre32100 escreveu:No total temos \dbinom{40+36}{2}=\dfrac{76\cdot75}{2}=2850 escolhas.

Eu esqueci de apagá-la. Isso não "inflói nem contribói" nada na resolução.
Espero ter sido claro.
alexandre32100
 


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: