• Anúncio Global
    Respostas
    Exibições
    Última mensagem

demosntrar

demosntrar

Mensagempor fttofolo » Sex Nov 19, 2010 11:05

prove que
\sqrt[3]{2+\sqrt[2]{5}}+\sqrt[3]{2-\sqrt[2]{5}}=1
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: demosntrar

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:18

\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}} \text{  (HI)}
Se elevarmos as duas expressões ao cubo temos:
\left ( \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right )^3=1^3=1

É bom lembrar que (a+b)^3=a^3 + 3a^2 b + 3ab^2 + b^3.
Aplicando isso à equação do problema:
\\2+\sqrt{5}+3\cdot\sqrt[3]{(2+\sqrt{5})(2+\sqrt{5})(2-\sqrt{5})}+3\cdot\sqrt[3]{(2+\sqrt{5})(2-\sqrt{5})(2-\sqrt{5})}+2-\sqrt{5}
\text{Obs: } (2+\sqrt{5})(2-\sqrt{5})=2^2-5=-1 \text{ e }\sqrt[3]{-1}=-1 , assim:
4+3\cdot\sqrt[3]{(2+\sqrt{5})(-1)}+3\cdot\sqrt[3]{(2-\sqrt{5})(-1)}=4-3\cdot\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)
Pela HI, 4-3\cdot1=1, cqd.
alexandre32100
 


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)