Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por victoreis1 » Qui Nov 18, 2010 15:36
Duas elipses as quais possuem o mesmo centro, ambas de raio menor igual a 1 cm e raio maior igual a 2 cm, estão dispostas de tal modo que o raio maior de uma forme 90º com o raio maior da outra, conforme a figura:

Determine o valor da área da região interna às duas elipses. (que parece um quadrado deformado)
Eu sei que a área de uma elipse é igual a

, mas não estou conseguindo desenvolver um método para calcular tal área..
alguém tem alguma ideia?
Editado pela última vez por
victoreis1 em Qui Nov 18, 2010 17:39, em um total de 1 vez.
-
victoreis1
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qua Out 20, 2010 14:49
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por alexandre32100 » Qui Nov 18, 2010 17:04
Victor, usa o sistema de upload de imagem do site, não to conseguindo visualizar a imagem.
Valeu, espero poder te ajudar.
-
alexandre32100
-
por victoreis1 » Qui Nov 18, 2010 17:39
alexandre32100 escreveu:Victor, usa o sistema de upload de imagem do site, não to conseguindo visualizar a imagem.
Valeu, espero poder te ajudar.
tava dando erro mesmo.. ajeitei, vê se tá pegando..
-
victoreis1
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qua Out 20, 2010 14:49
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qui Nov 18, 2010 19:20
Talvez usando integral dupla saia, porém deve ter um outro método de resolução. Vou pensar mais.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por victoreis1 » Qui Nov 18, 2010 20:11
to com uma ideia massa, só preciso de uma ajudinha na integral (sou do 1º ano ainda). me corrijam se eu estiver errado
os pontos de intersecção das elipses, considerando a origem (0,0) como sendo o centro das duas, serão

, facilmente notável igualando as equações das duas.
Logo a área do quadrado formado por essas intersecções é de

.
Preciso de que me ajudem a calcular o valor de

pra poder prosseguir..
EDIT: calculando a integral usando wolfram alpha, concluí o problema achando que a área =

aproximadamente igual a 3,709 cm²
ainda assim, queria que vcs me dissessem como calculo aquela integral.. estou curioso

-
victoreis1
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qua Out 20, 2010 14:49
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qui Nov 18, 2010 20:39
Acredito que o método seja por integral dupla, que no caso teria que dividir em mais de uma região. Ficaria meio chato mas "resolvível".
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por victoreis1 » Qui Nov 18, 2010 20:44
Fantini escreveu:Acredito que o método seja por integral dupla, que no caso teria que dividir em mais de uma região. Ficaria meio chato mas "resolvível".
pode ser, mas desse meu jeito não precisei de integrais duplas, só de uma integral "simples".. e tenho quase certeza de que está certo. além de que com integrais duplas levaria muito mais tempo
e como faço pra saber a função cuja derivada é

?
-
victoreis1
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qua Out 20, 2010 14:49
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qui Nov 18, 2010 21:16
Substituição trigonométrica. Monte um triângulo auxiliar e posicione de acordo, e aí vá encontrando os primeiros em função dos outros. É muito trabalho, talvez seja tão trabalhoso quanto integral dupla.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Aplicações de elipses na Computação
por xMtAx » Sex Out 22, 2010 00:32
- 0 Respostas
- 1527 Exibições
- Última mensagem por xMtAx

Sex Out 22, 2010 00:32
Geometria Analítica
-
- [Razão da área do triângulo para a área do quadrilátero]
por Mayra Luna » Sex Nov 23, 2012 20:17
- 2 Respostas
- 4271 Exibições
- Última mensagem por Mayra Luna

Ter Nov 27, 2012 14:53
Geometria Plana
-
- Área - Na próxima figura ABCD é um quadrilátero de área 200
por marguiene » Sex Out 10, 2014 10:22
- 0 Respostas
- 2056 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:22
Geometria Plana
-
- Área - Na figura abaixo ABCD é um retângulo de área 11 cm².
por marguiene » Sex Out 10, 2014 10:35
- 0 Respostas
- 2822 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:35
Geometria Plana
-
- [Área] Área de triangulo e trapézio
por smlspirit » Qui Jul 19, 2012 20:07
- 1 Respostas
- 2878 Exibições
- Última mensagem por e8group

Qui Jul 19, 2012 20:57
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.