• Anúncio Global
    Respostas
    Exibições
    Última mensagem

perímetro

perímetro

Mensagempor GeRmE » Seg Nov 15, 2010 13:05

eu não consigo resolver o seguinte exercício, assim que descubro o valor de FE eu empaco. se alguém souber como fazer, sinta-se à vontade.
Anexos
1.JPG
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando

Re: perímetro

Mensagempor VtinxD » Seg Nov 15, 2010 14:33

Perceba que no triângulo FED, retângulo, se usarmos o seno do angulo DFE:
Sen(60°)=\frac{\sqrt[2]{3}}{2}=\frac{ED}{FD}\Rightarrow FD=\frac{2.ED}{\sqrt[2]{3}}\Rightarrow FD=\frac{2.(4\sqrt[2]{3})}{\sqrt[2]{3}}\Rightarrow FD=8
Sendo FD o ponto médio:
FD=GF\Rightarrow 2FD=GD=AC.Utilizando a projeção de F no segmento AC, temos um triângulo retângulo,FF'B.Como F' é projeção de F em AC ele também é ponto médio.Logo:
'FB=FD-BC\Rightarrow 'FB=8-2\sqrt[2]{3}.Como o angulo F'FD é igual a 90° ,temos:
'FFB='FFD-EFD \Rightarrow 'FFB=30°.Agora utilizando a tangente de F'FB:
Tg(30°)=\frac{\sqrt[2]{3}}{3}=\frac{'FB}{F'F}\Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}} \Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}}.\frac{\sqrt[2]{3}}{\sqrt[2]{3}}\Rightarrow  F'F='FB.\sqrt[2]{3}.É facil perceber que FF' é igual a GA e DC.
2p=GD+AC+DC+AG=2GD+2DC=4FD+2F'F
Espero ter ajudado.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: perímetro

Mensagempor GeRmE » Seg Nov 15, 2010 15:51

obrigado amigo
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.