• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz II

Matriz II

Mensagempor Colton » Qui Nov 11, 2010 12:48

+
+

Olá pessoal,

Estou relançando minha dúvida do seguinte exercício, para o qual não estou encontrando solução:


Como ainda não sei operar com o Latex, faço a seguinte convenção para matrizes:
Linha: a11 = primeira casa, a12 = segunda casa, etc
Coluna: a11 = primeira casa, a21 = segunda casa, etc

o exercício é o que segue


“Supondo positivos todos os elementos literais da matriz quadrada nxn

a11 = a1, a12 = a2, ...., aij = (vago), a1n = an
a21 = b1, a22 = b2, ...., aij = bn-1, a2n = 0
....................................................................
an1 = r1, an2 = 0, ......, aij = 0, ann = o

e sendo n múltiplo de 4, qual é o sinal do determinante correspondente?”

A matriz do enunciado tem o seguinte aspecto gráfico:

a1#a2#...# #an
b1#b2#...#bn-1# 0
...........................
r1# 0 #...# 0 # 0 (o jogo da velha representando os espaços entre as células)

Seguindo a indicação do enunciado eu tentei trabalhar com a seguinte matriz (4x4) e
respectivas manipulações:

[(a1), (a2), (a3), (a4)]
[(b1), (b2), (b3), (0)]
[(c1), (c2), (c3), (0)]
[(r1), (0), (0), (0)]

trocando a 4ª com a 1ª linha => Det fica negativo

[(r1), (0), (0), (0)]
[(a1), (a2), (a3), (a4)]
[(b1), (b2), (b3), (0)]
[(c1), (c2), (c3), (0)]

dividindo a primeira linha por r1 => Det fica multiplicado por r1 => isto é por -r1

[(1), (0), (0), (0)]
[(a1), (a2), (a3), (a4)]
[(b1), (b2), (b3), (0)]
[(c1), (c2), (c3), (0)]

aplicanto a Regra de Chió chego a:

-r1 multiplicando
[(a2), (a3), (a4)]
[(b2), (b3), (0)]
[(c2), (c3), (0)]

onde eu “empaco” pois o determinante resulta em

-r1[a4 b2 c3 - a4 b3 c2]

e eu não vejo como determinar que este produto seja positivo (que é a resposta do exercício).

Espero que haja alguém mais esperto do que eu para me orientar...

Sds

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Matriz II

Mensagempor Elcioschin » Sex Nov 12, 2010 11:50

Colton:

Como totos os elementos da matriz são positivos, no final o resultado deverá ser negativo.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Matriz II

Mensagempor Colton » Sex Nov 12, 2010 12:04

+
+

Olá Elcioschin!

Então devo concluir que a resposta dada no livro: POSITIVO está errada?
Nesta coleção há muito poucas respostas erradas (Fundamentos de Matemática Elementar, 11 volumes, o presente exercício é o de número 328 do volume 4 "sequências-matrizes-determinantes-sistemas")

Abraço

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.