por Catriane Moreira » Seg Nov 08, 2010 20:21
?
Editado pela última vez por
Catriane Moreira em Seg Nov 08, 2010 20:52, em um total de 1 vez.
-
Catriane Moreira
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Set 06, 2010 16:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por MarceloFantini » Seg Nov 08, 2010 20:33
Primeiramente, não poste três tópicos iguais (o outro o colega Elcio respondeu, você esqueceu ou ignorou a resposta dele), criou este e mais um. Como eu comentei em outro tópico, isso é deselegante e descortês com as outras pessoas do fórum, pois você está tirando a chance de outra pessoa aparecer com sua dúvida na página principal e talvez ter sua dúvida resolvida. Além disso, postar um tópico mais de uma vez é irritante e não aumenta suas chances de obter resposta, pelo contrário, diminui. Então não faça isso.
Como dito pelo Elcio, 5 anos são 10 meses. Segundo,

NÃO É

. O procedimento certo é extrair a raíz primeiro e depois subtrair um. Tente seguindo esses passos. A conta que você fez foi, erroneamente, encontrar uma taxa anual. Você ainda deveria extrair a raíz quadrada para obter a semestral.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Eu calculei certo a taxa semestral
por Catriane Moreira » Dom Nov 07, 2010 17:09
- 1 Respostas
- 2436 Exibições
- Última mensagem por Cleyson007

Dom Nov 07, 2010 17:49
Matemática Financeira
-
- Amigos do Orkut
por Molina » Qua Jun 10, 2009 11:57
- 1 Respostas
- 1778 Exibições
- Última mensagem por Douglasm

Seg Fev 22, 2010 17:20
Desafios Difíceis
-
- questao dos tres amigos que pagam a conta
por hevhoram » Qua Jun 09, 2010 13:20
- 3 Respostas
- 1984 Exibições
- Última mensagem por MarceloFantini

Qui Jun 10, 2010 14:17
Álgebra Elementar
-
- Amigos não estou conseguindo resolver o exercicio...
por Catriane Moreira » Seg Set 06, 2010 21:56
- 1 Respostas
- 1680 Exibições
- Última mensagem por Cleyson007

Seg Set 06, 2010 23:15
Sistemas de Equações
-
- Amigos me ajudem resolver esse problema
por Catriane Moreira » Sáb Nov 06, 2010 23:11
- 1 Respostas
- 1569 Exibições
- Última mensagem por Rogerio Murcila

Ter Nov 09, 2010 14:35
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.