por Catriane Moreira » Dom Nov 07, 2010 17:09
Qual a taxa semestral equivalente composta a 28,2% ao ano?
1 + I = (1 + i)^n
1 + 0,282 = (1 + i)^2 ---> elevado a 2 pq um ano tem 2 semestres
1 + i = Raiz(1,282)
i = 0,132.100=13,2%
-
Catriane Moreira
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Set 06, 2010 16:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Cleyson007 » Dom Nov 07, 2010 17:49
Olá, boa tarde!
Catriane, essa matéria se chama "
Taxas Equivalentes" (essa definição é válida tanto para juros simples quanto para juros compostos).
![(1+{i}_{a})^1=(1+{i}_{s})^2\\\\(1+0,282)^1=(1+{i}_{s})^2\\\\1,282=(1+{i}_{s})^2\,\,\Rightarrow\,\,1+{i}_{s}=\sqrt[2]{1,282}\\\\1+{i}_{s}=1,132254388\,\,\leftrightarrow\,\,{i}_{s}=13,22\,por\,cento (1+{i}_{a})^1=(1+{i}_{s})^2\\\\(1+0,282)^1=(1+{i}_{s})^2\\\\1,282=(1+{i}_{s})^2\,\,\Rightarrow\,\,1+{i}_{s}=\sqrt[2]{1,282}\\\\1+{i}_{s}=1,132254388\,\,\leftrightarrow\,\,{i}_{s}=13,22\,por\,cento](/latexrender/pictures/2d2f95a0b04e37402727b1934790eb96.png)
Resumindo, você está correta!
Bons estudos!
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Olá amigos eu calculei certo Urgente
por Catriane Moreira » Seg Nov 08, 2010 20:21
- 1 Respostas
- 954 Exibições
- Última mensagem por MarceloFantini

Seg Nov 08, 2010 20:33
Matemática Financeira
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2242 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2211 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por Danilo Dias Vilela » Qui Out 15, 2009 12:11
- 1 Respostas
- 9750 Exibições
- Última mensagem por marcelo ebm

Ter Nov 24, 2009 22:11
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por MuitaGarra » Sáb Mar 24, 2012 11:38
- 1 Respostas
- 2415 Exibições
- Última mensagem por Fabiano Vieira

Dom Abr 22, 2012 18:53
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.