01. De quantos modos diferentes se poder organizar, em uma fila de 10 cadeiras, 4 palmeirenses, 3 atleticanos, 2 flamenguistas e 1 gremista, de modo que torcedores da mesma fiquem sempre juntos e palmeirenses não fiquem nas extremidades?
Tentei resolvê-la da seguinte forma;
Primeiro pensei nas possibilidades de organização dos torcedores dentro de seus respectivos grupos de torcida. Portanto, conclui isto:
, representando, respectiviamente, palmeirenses, atleticanos, flamenguistas e o gremista. Compactanto minha idéia, pensei nas possibilidades de estruturação entre as torcidadas retirando os palmeirenses das extremidades, cheguei a esse resultado:
. Sendo o produto de tudo (
) igual a 3456. Entretanto, foi considerado errado.Por favor ajudem-me, desde já obrigado.

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.