• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória - "Torcedores"

Análise Combinatória - "Torcedores"

Mensagempor raimundoocjr » Sex Nov 05, 2010 22:44

TORCEDORES
01. De quantos modos diferentes se poder organizar, em uma fila de 10 cadeiras, 4 palmeirenses, 3 atleticanos, 2 flamenguistas e 1 gremista, de modo que torcedores da mesma fiquem sempre juntos e palmeirenses não fiquem nas extremidades?

Tentei resolvê-la da seguinte forma;
Primeiro pensei nas possibilidades de organização dos torcedores dentro de seus respectivos grupos de torcida. Portanto, conclui isto: {P}_{4}.{P}_{3}.{P}_{2}.{P}_{1}, representando, respectiviamente, palmeirenses, atleticanos, flamenguistas e o gremista. Compactanto minha idéia, pensei nas possibilidades de estruturação entre as torcidadas retirando os palmeirenses das extremidades, cheguei a esse resultado: {P}_{2}.{P}_{3}. Sendo o produto de tudo ({P}_{4}.{P}_{3}.{P}_{2}.{P}_{1}{P}_{2}.{P}_{3}) igual a 3456. Entretanto, foi considerado errado.

Por favor ajudem-me, desde já obrigado.
raimundoocjr
 

Re: Análise Combinatória - "Torcedores"

Mensagempor Elcioschin » Sáb Nov 06, 2010 13:54

Quanto ao P4*P3*P2*P1 não reta nenhuma dúvida;

Vamos mostrar agora a distribuição dos 4 grupos, nas cadeiras, numeradas de 1 a 10

1 .... 2 .... 3 .... 4 .... 5 .... 6 .... 7 .... 8 .... 9 ---- 10

G .... P .... P .... P .... P .... A .... A .... A .... F ---- F
G .... P .... P .... P .... P .... F .... F .... A .... A ---- A

F .... F .... P .... P .... P .... P .... A .... A .... A ---- G
F .... F .... P .... P .... P .... P .... G .... A .... A ---- A

A .... A .... A .... P .... P .... P .... P .... G .... F .... F
A .... A .... A .... P .... P .... P .... P .... F .... G .... G
G .... F .... F .... P .... P .... P .... P .... A .... A .... A
F .... F .... G .... P .... P .... P .... P .... A .... A .... A

A .... A .... A .... G .... P .... P .... P .... P .... F .... F
G .... A .... A .... A .... P .... P .... P .... P .... F .... F

A .... A .... A .... F .... F .... P .... P .... P .... P .... G
F .... F .... A .... A .... A .... P .... P .... P .... P ..... G

São portanto 12 possibilidades ----> N = 12*(24*6*2*1) ----> N = 3456 ----> você está certo
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Análise Combinatória - "Torcedores"

Mensagempor raimundoocjr » Dom Nov 07, 2010 13:00

Muito obrigado. Realmente, eu acertei. Existiram equívocos de algumas partes. Novamente, obrigado.
raimundoocjr
 


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}