Materiais sobre Cálculo.
Utilize a seção de pedidos para outros que não estejam disponíveis.
As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por braddock » Seg Mai 05, 2014 04:06
Estou tendo um problema no seguinte limite, x e y tendem a 0, sei que o limite vai dar zero, mas não consigo resolver... se alguém conseguir me ajudar, ficaria grato

-
braddock
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mai 05, 2014 03:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrônica
- Andamento: cursando
por e8group » Seg Mai 05, 2014 10:59
Dica :
Limite de funções da forma que ( u * v ) é zero sempre que uma delas é limitada e o limite da outra é zero .
Sejam

. Defina

. Suponha

limitada , isto é , existe algum

tal que

para qualquer que seja o vetor

em

.
Se para algum

, temos

então

.
(

representa o conjunto dos ponto de acumulação de A)
De fato ,

tal que se

então

.
Segue-se que

.
Além disso , por hipótese

, o que significa que dado

existe um

(correspondente) tal que

implica

.
Logo ,

implica

.
Como a relação acima é verdadeira para qualquer

, dado

podemos tomar

e com isso temos

implica

.
Ou seja, dado

, tomando

conseguimos um

tal que se (o lardo esquerdo da implicação é verdeiro o lado direito também o é )

.
É o que exatamente diz em

.
Agora com absoluta certeza podemos afirmar que

.
Espero que ajude .
Para exemplificar
Seja

(onde :

)
Temos que

( onde

vetor nulo do R^n ) , pois
como

, então

e assim

. Seja

e

.
Temos que g é limitada (por 1) e o limite de f é zero quando X tende ao vetor nulo , logo o limite de h também é zero .
Mais um exemplo ...
Se

. Temos

(Pq ??)
Espero que ajude .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por braddock » Seg Mai 05, 2014 22:17
Ajudou muito sim, muito obrigado.
-
braddock
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mai 05, 2014 03:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrônica
- Andamento: cursando
Voltar para Cálculo
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4793 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite]Limite de uma funçao de varias variaveis
por TheKyabu » Seg Fev 04, 2013 22:01
- 3 Respostas
- 3470 Exibições
- Última mensagem por young_jedi

Ter Fev 05, 2013 19:47
Cálculo: Limites, Derivadas e Integrais
-
- Derivada com várias variáveis
por kryzay » Seg Mai 14, 2012 09:23
- 2 Respostas
- 2676 Exibições
- Última mensagem por kryzay

Seg Mai 14, 2012 10:58
Cálculo: Limites, Derivadas e Integrais
-
- [Derivação Implícita] Várias Variáveis
por Bob90 » Ter Abr 09, 2013 07:52
- 0 Respostas
- 2317 Exibições
- Última mensagem por Bob90

Ter Abr 09, 2013 07:52
Cálculo: Limites, Derivadas e Integrais
-
- Limites de funções com varias variáveis
por Fernandobertolaccini » Qua Dez 17, 2014 10:49
- 1 Respostas
- 3760 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 13:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.