Materiais sobre Álgebra.
Utilize a seção de pedidos para outros que não estejam disponíveis.
As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por 1marcus » Sex Set 11, 2020 17:07
!)O produto de vetores que está definido no espaço bidimensional e no espaço tridimensional é o produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial
2)O produto de vetores resultante da soma dos produtos das componentes correspondentes entre dois vetores, chama-se produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial
3)O teste de ortogonalidade entre dois vetores é realizado por meio do produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial
4)O produto entre os vetores u, v e w é zero se um dos vetores é nulo, se dois deles são colineares ou se os três são coplanares. Que produto é esse?
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial
5)Um vetor simultaneamente ortogonal aos vetores u e v é um vetor resultante do produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial
6)O produto misto entre os vetores u, v e w (todos não nulos) é nulo quando:
Grupo de escolhas da pergunta
()Não existe nenhuma relação de paralelismo entre os vetores.
()Os três vetores situam-se no mesmo plano.
()Um dos vetores é simultaneamente ortogonal aos outros dois vetores.
-
1marcus
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Nov 02, 2018 15:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Álgebra
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questões de múltipla escolha
por fraol » Seg Jan 02, 2012 20:51
- 2 Respostas
- 2754 Exibições
- Última mensagem por fraol

Ter Jan 03, 2012 11:09
Estatística
-
- Preciso De Ajuda Em Escolha Multipla
por Kyapo » Sáb Abr 10, 2010 11:25
- 4 Respostas
- 3170 Exibições
- Última mensagem por Kyapo

Sáb Abr 10, 2010 16:12
Álgebra Elementar
-
- Ajuda com questões
por Luiz Felipe » Seg Fev 13, 2012 16:20
- 6 Respostas
- 4682 Exibições
- Última mensagem por LuizAquino

Seg Fev 13, 2012 20:25
Geometria Analítica
-
- Ajuda em questões
por abreu_29 » Seg Jan 14, 2013 18:12
- 0 Respostas
- 1223 Exibições
- Última mensagem por abreu_29

Seg Jan 14, 2013 18:12
Matemática Financeira
-
- Ajuda nas questões abaixo
por luizeduardo » Qui Jun 16, 2011 13:22
- 2 Respostas
- 1916 Exibições
- Última mensagem por luizeduardo

Sex Jun 17, 2011 10:10
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.