• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sequencias e series infinitas

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Sequencias e series infinitas

Mensagempor Buda » Dom Out 30, 2011 00:46

O que esta errado com o seguinte calculo?

0=0+0+0+0+...
= (1-1)+(1-1)+(1-1)+...
=1-1+1-1+1-1+...
=1+(-1+1)+(-1+1)+...
=1+0+0+0+0+...= 1

(Guildo Ubaldo pensou que isso provava a existencia de Deus, porque ''alguma coisa tiha sido criada do nada'')

Calculo volume 2 James Stuwart.Pag 660.
Buda
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Out 24, 2011 21:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: Sequencias e series infinitas

Mensagempor MarceloFantini » Dom Out 30, 2011 03:35

O que está errado é que não é a mesma forma, quando se agrupa diferentemente muda a soma da série, pois ela é divergente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sequencias e series infinitas

Mensagempor LuizAquino » Dom Out 30, 2011 12:53

Eu recomendo que você leia a página:

Grandi's series
http://en.wikipedia.org/wiki/Grandi%27s_series
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}