• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória?

Análise Combinatória?

Mensagempor leandroxtr » Sex Fev 07, 2020 09:25

Pessoal, bom dia!

Um exercício que ao ver parece bem fácil, mas não consigo chegar a um cálculo correto de jeito nenhum. Penso que ele é passivo de uma análise combinatória, só que não sei como resolver. Na verdade, não sei nem como começar. Alguém poderia me dar um help?
O exercício é o seguinte:

Em um shopping existe uma máquina de surpresas (de quantidade infinita, pois o seu conteúdo nunca acabará), onde a cada tentativa, tenho 60% de obter uma surpresa normal, 37,5% de obter uma surpresa rara, e 2,5% de chance de obter uma surpresa especial. Com o objetivo de aumentar as minhas chances de obter uma surpresa especial, [b]adquiri 28 tentativas.

Qual será a minha probabilidade de obter pelo menos 1 surpresa especial?[/b]

Me ajudarão MUUUITO
Obrigado pela atenção
leandroxtr
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Fev 06, 2020 11:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: GESTÃO FINANCEIRA
Andamento: cursando

Re: Análise Combinatória?

Mensagempor adauto martins » Seg Fev 24, 2020 12:07

usar a "distribuiçao binomial,de probabilidades".
{p}_{k}={c}_{(n,k)}.{p}^{k}.{q}^{(n-k)}
onde n(numero de eventos,em nosso caso tentativas,n=28),k(numero de intençoes de acertos,k=1)
p(probabilidades de acertos ,p=2.5%=1/40),q(probalidade de erros,q=1-p=1-(1/40)=39/40)...
q é surp.normal,sup.rara,nada...logo:
a possibildade(probabilidade) de um acerto em 28 tentaivas sera:

{p}_{1}={c}_{(28,1)}.{(1/40)}^{1}.{(39/40)}^{(28-1)}=

p=28!/((1!.27!).(1/40).{(39/40)}^{27})...
ps-distribuiçao binomial de probabildades vem da "expansao do binomio de newton"...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 999
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.