• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade] peças dentro do padrão em três lotes

[Probabilidade] peças dentro do padrão em três lotes

Mensagempor leandrocf » Sex Jul 15, 2016 12:56

Olá, estou tendo dificuldade para a realização do seguinte exercício:

"Considere três lotes de 20 peças cada. O número de peças dentro do padrão no primeiro, segundo e terceiro lote são, respectivamente, 20, 15 e 10. De um lote escolhido ao acaso, retira-se uma peça aleatoriamente e verifica-se que está dentro do padrão. Devolve-se a peça ao lote e efetua-se uma nova retirada do mesmo lote e verifica-se que a segunda peça também está dentro do padrão.
a) Qual a probabilidade das duas peças retiradas estarem dentro do padrão?
b)Qual a probabilidade das peças terem sido retiradas do terceiro lote?
"
Tenho aqui a solução que foi apresentada, contudo não entendi o que foi realizado:

a)
P(P1) = 1; P(P2) = 3/4; P(P3) = 1/2
P = (1/3)(P(P1))^2 + (1/3)(P(P2))^2 + (1/3)(P(P3))^2
P = 29/48

Não entendi qual lógica que ele está usando com esses termos ao quadrado, qual fórmula!
Consequentemente não entendi a b)

b)
P(P|3° lote) = 1/4
P(P|2° lote) = 9/16
P(P|1° lote) = 1

P(3° lote|P) = (P(P| 3° lote)/P(P)) * P(3° lote) = 4/29
Agradeceria se alguém pudesse me ajudar a entender :-D
leandrocf
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jul 15, 2016 12:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)