• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ANALISE-COMBINATORIA - PRINCÍPIO DA INCLUSÂO-EXCLUSÂO

ANALISE-COMBINATORIA - PRINCÍPIO DA INCLUSÂO-EXCLUSÂO

Mensagempor marcoblade » Ter Set 23, 2014 18:31

quantos sao os inteiros compreendidos entre 1 e 500 inclusive que são divisiveis por exatamente 2 dos numeros 2, 3 e 7 ?
marcoblade
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 23, 2014 18:29
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: ANALISE-COMBINATORIA - PRINCÍPIO DA INCLUSÂO-EXCLUSÂO

Mensagempor adauto martins » Seg Jul 29, 2019 17:30

vamos tomar os numeros,2 e 3...
sejam A={ divisores de 2},B={divisores de 3}...
n(A)=500/2=250...n(B)=500/3=166,666...,o qual vc toma a parte inteira,ou seja:
n(B)=166...n(A\capB}=500/6=83...6=2.3...
logo,teremos:
n(A \cap B)=n(A)+n(B)-n(A\capB)=250+166-83=333...
analogamente p/(2,7),(3,7)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}