• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício da Puc-SP

Exercício da Puc-SP

Mensagempor Vivian_G » Sáb Jan 26, 2013 15:22

Dada a equação x + x‚ + ... + xn = k, na qual k N, chama-se solução inteira dessa equação a toda n-pla de números inteiros (?,?‚, ..., ?n), tal que ? + ?‚ + ... + ?n = k. Assim, por exemplo, as ternas (6, 10, 3) e (-2, 9, 12) são soluções inteiras da equação x + y + z = 19. Sabe-se que o número de soluções inteiras e positivas da equação x + x‚ + ... + xn = k é dado pela combinação (C) de k - 1 elementos, n - 1 a n - 1. Nessas condições, se a equação x + y + z = k tem 36 soluções inteiras e positivas, então uma solução dessa equação é:
a) (2, 1, 3)
b) (4, 2, 3)
c) (3, 6, 1)
d) (5, 3, 4)
e) (8, 7, 5)
Vivian_G
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jan 26, 2013 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercício da Puc-SP

Mensagempor young_jedi » Dom Jan 27, 2013 13:37

C_{n-1}^{k-1}=\frac{(k-1)!}{(n-1)!(k-1-n+1)!}

como nos temos tres termos então n=3 então

\frac{(k-1)!}{2!(k-1-2)!}=36

\frac{(k-1)(k-2)}{2}=36

k^2-3k+2=72

k^2-3k-70=0

resolvendo por baskara ou soma e produto

k=-7 ou k=10

como k deve ser positivo então k igual a 10

a alternativa que satisfaz é a c)

pois

3+6+1=10
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}