• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Abr 06, 2021 15:21

(ITA-1959)mostre se o enunciado é verdadeiro.
se m e p sao numeros inteiros positivos tais que o numero de combinaçoes de m objetos p a p seja igual ao numero de combinaçoes de m objetos (p-1) a (p-1),entao m é necessariamente impar.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Ter Abr 06, 2021 15:37

pelo o enunciado teremos

{C}_{n,p}={C}_{n,(p-1)}

logo

n!/(p!.(n-p)!)=n!/((p-1)!.(n-(p-1)!)\Rightarrow

1/(p!.(n-p)!)=1/((p-1)!.(n-(p-1)!)\Rightarrow

p!.(n-p)!=(p-1)!.(n-(p-1)!

p!.(n-p)!)=(p-1)!p.(n-(p-1)!.n=(p-1)!.(n-(p-1)!\Rightarrow

p.(n-p)=1\Rightarrow n.p-p^2=1\Rightarrow p^2-n.p+1=0

para se ter raizes de p,teriamos que ter

\Delta \succeq 0\Rightarrow n^2-4\succeq 0\Rightarrow

n\succeq 2
pois n é inteiro positivo
ou ainda

n.p-p^2=1\Rightarrow p.n={p}^{2}+1\Rightarrow

n=p+(1/p)

para se ter n inteiro positivo,teriamos que ter

p=1

logo

adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.