• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise Combinatória]

[Análise Combinatória]

Mensagempor Zuzinhah » Seg Fev 09, 2015 15:05

Oi pessoal!

Imaginem uma série de 60 números, sendo de 1 a 60 colocados em uma tabela de 10 linhas e 6 colunas, agrupados em 15 quadrantes, ou seja, 4 números em cada quadrante, de forma a ter 3 linhas e 5 colunas de quadrantes. Pergunta-se:

a) De quantas maneiras distintas posso escolher 6 números, sendo todos eles de quadrantes diferentes?
b) De quantas maneiras distintas posso escolher 6 números, sendo 4 em quadrantes diferentes e os outros 2 em um mesmo quadrante?

Comentário: A letra "a", eu custeeeeeei, mas consegui fazer, eu pensei em: C15,6 * 4^6, onde C15,6 seria uma combinação para escolher 6 números em 15 quadrantes, e 4^6 ou 4*4*4*4*4*4, porque temos 4 números em cada quadrante e preciso de 6 números. Então cheguei a essa conclusão e a resposta coincidiu com a que me informaram, 20.500480.

Mas a letra b, seguindo um raciocício parecido, tentei C15,4*4^4 * C 15,2 * ????. Não sei se comecei correto, mas, foi o que pensei. Tentei várias formas, mas, não chego à resposta que me passaram 14.625.000. Agradeço se alguém puder me dar o caminho.

(É a minha primeira pergunta no fórum, portanto se tiver alguma coisa em desacordo, é só me dizer. Quero usar o fórum com seriedade e da forma correta, obrigada).
Zuzinhah
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Fev 09, 2015 14:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}