• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(G1 - ifsp)

(G1 - ifsp)

Mensagempor Maria Livia » Sáb Mai 18, 2013 22:39

Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas cores é
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (G1 - ifsp)

Mensagempor Rafael16 » Sáb Mai 18, 2013 23:18

Boa noite Maria Livia!

Sem título.png
Sem título.png (3.43 KiB) Exibido 14960 vezes


Temos 5 cores.
Em R1 temos então 5 possibilidades. Já em R2 vamos ter só 4, pois em R1 vamos escolher uma cor e vai nos restar 4, já que os retângulos devem ser pintados com duas cores e retângulos de mesmo lado não podem ter a mesma cor.
Em R3 vamos ter 1 possibilidade, que é a cor escolhida em R1, e R4 também vamos ter somente 1 possibilidade, que é a cor escolhida em R2. Ou seja, temos que pintar o retângulo "cor-sim cor-não" somente com duas cores.

R1 = 5 possibilidades
R2 = 4 possibilidades
R3 = 1 possibilidade
R4 = 1 possibilidade

R1 * R2 * R3 * R4 = 20

Espero ter ajudado!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (G1 - ifsp)

Mensagempor Maria Livia » Dom Mai 19, 2013 00:23

obg!
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (G1 - ifsp)

Mensagempor anaflaviasouza » Sex Mar 14, 2014 17:27

Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas coresé?

tive um pouco de dificuldade em entender a resolução apresentada aqui, porque utilizar as 5 cores se no final do exercício ele deixou definido que os quatro retângulos fossem pintados com apenas duas cores?
anaflaviasouza
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 14, 2014 17:18
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: meio ambiente
Andamento: formado

Re: (G1 - ifsp)

Mensagempor anaflaviasouza » Sex Mar 14, 2014 18:23

anaflaviasouza escreveu:Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas coresé?

tive um pouco de dificuldade em entender a resolução apresentada aqui, porque utilizar as 5 cores se no final do exercício ele deixou definido que os quatro retângulos fossem pintados com apenas duas cores?
anaflaviasouza
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 14, 2014 17:18
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: meio ambiente
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.