• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Conjuntos] Confusão em teoria dos conjuntos numa questão.

[Conjuntos] Confusão em teoria dos conjuntos numa questão.

Mensagempor Debora Bruna » Seg Jan 11, 2016 17:44

Congratulations mestres do Ajuda matemática! :y:

Então, resolvendo esse exercício
fgv.png
exercício e gabarito
, melhor dizendo, TENTANDO resolver, acabei não conseguindo e parti em busca do gabarito, que também está no anexo do exercício. A questão é, não concordei com a resolução, pois não sei se realmente está "errado" ou se eu -mais uma vez- me confundi na teoria. Por exemplo, quando o exercício "diz" que VI. 640 filiados votaram a favor de C, mas não de A ou de B, ele coloca os 640 todinho no C, e eu aprendi que esse valor não é somente os filiados que votaram em C, e sim está incluso os outros 2 (A e B). Do mesmo modo que em B. Segue outro anexo com o meu raciocínio.
vn.png
minha resoluçao
Nele, eu fiz à primeira vista, fiz também as hachuras de cada item, pois esse seria o meu outro raciocínio que vai de acordo com o gabarito, se eu realmente colocasse os respectivos valores em cada mancha. Resumindo meus dois raciocínios: 1° pensei que os valores dados não eram exclusivos para cada conjunto, e assim desenvolvi como segue no anexo. Já na 2° pensei baseado nas hachuras que fiz, e assim daria certo. Mas quero saber o porquê do 1° raciocínio não dar certo.

Conto com a paciência e a genialidade de vocês, que sem dúvidas são quase inevitáveis :rose: :coffee:
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Conjuntos] Confusão em teoria dos conjuntos numa questã

Mensagempor DanielFerreira » Sáb Jan 23, 2016 16:44

Olá Débora Bruna, boa tarde!

Teu equívoco ocorre no seguinte raciocínio:

Debora Bruna escreveu:(...) quando o exercício "diz" que VI. 640 filiados votaram a favor de C, mas não de A ou de B, ele coloca os 640 todinho no C, e eu aprendi que esse valor não é somente os filiados que votaram em C, e sim está incluso os outros 2 (A e B)...


A parte em negrito que informa: mas não de A ou de B, indica que devemos excluir A \cup B; ou seja, SOMENTE os que votaram em C...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1683
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}