Um grupo de fornecedores foi dividido em três conjuntos, de acordo com o atendimento a três critérios de qualidade, denominados critérios A, B e C. Após uma análise, observou- se que apenas quatro empresas atendem aos três critérios; seis empresas atendem aos critérios B e C; dez empresas atendem ao critério C, mas não atendem ao A; doze empresas atendem ao critério B, mas não atendem ao A, e vinte e três empresas atendem a, pelo menos, um dos critérios A ou B.
Considerando-se que nesse grupo de fornecedores não existe empresa que não atenda a, pelo menos, um dos três critérios, o número total de empresas desse grupo, isto é, n(AUBUC), é igual a
Eu cheguei ao resultado 27 mas o gabarito esta 31.Não entendi o motivo. Me ajudem.Obrigado


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)