• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação entre conjuntos

Relação entre conjuntos

Mensagempor marcelo_venancio » Sex Dez 07, 2012 11:06

Bom dia, primeiramente me perdoem se eu estiver postando errado pois este é meu primeiro tópico. Estou com dificuldades em um exercício e não sei como proceder, na verdade não entendi se eu devo primeiro encontrar a função para depois achar as relações ou encontrar essas relações só com a descrição dos conjuntos. E como seria essa montagem da matriz e grafo? Segue abaixo o enunciado do exercício, por favor me ajudem ...

Dados os conjuntos A = {11,22,33} e B = {21,31,41}, determine a relação (R1, ?): A?B , determinando o(s) tipo(s) de relação de R1 (injetora, sobrejetora, bijetora, funcional, total, monomorfismo, epimorfismo ou isomorfismo) e faça a representação por matriz e grafo.

Obrigado.
marcelo_venancio
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Dez 07, 2012 10:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.