por Carlos » Dom Set 04, 2011 10:25
Poderiam me ajudar a resolver os seguintes exercicios deconjunto:
1) 52 pessoas discutem a preferência por dois produtos A e B, entre outros e conclui-se que o número de pessoas que gostavam de B era:
I - O quádruplo do número de pessoas que gostavam de A e B;
II - O dobro do número de pessoas que gostavam de A;
III - A metade do número de pessoas que não gostavam de A nem de B.
Nestas condições, o número de pessoas que não gostavam dos dois produtos é igual a:
a) 48 b) 35 c) 36 d) 47 e) 37
2) 35 estudantes estrangeiros vieram ao Brasil. 16 visitaram Manaus; 16, S. Paulo e 11, Salvador. Desses estudantes, 5 visitaram Manaus e Salvador e, desses 5, 3 visitaram também São Paulo. O número de estudantes que visitaram Manaus ou São Paulo foi:
a) 29 b) 24 c) 11 d) 8 e) 5
-
Carlos
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 10:04
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por gustavoluiss » Ter Set 06, 2011 00:39
1)
Vamos considerar que:
x é o número de pessoas que só gostam de B,
y é o número de pessoas que só gostam de A,
z é o número de pessoas que gostam dos dois ao mesmo tempo e
k é o número de pessoas que não optaram por nenhum deles
Pela acertiva I temos: x + z = 4(z) ===> x = 3z (1)
Pela acertiva II temos: x + z = 2(y + z) ===> x + z = 2y + 2z ===> 2y = x - z (2)
substituindo (1) em (2) ===> 2y = 3z - z ===> y = z
Pela acertiva III temos: x + z = k/2 (4)
substituindo (1) em (4) ===> 3z + z = k/2 ===> k = 8z
Sabemos ainda que x + y + z + k = 52 logo
3z + z + z + 8z = 52 ===> z = 52/13 = 4
Daí x = 12, y = 4 e k = 32
A pergunta é qual o número de pessoas que não gostavam dos dois produtos (z) daí 52 - 4 = 48
letra a
-
gustavoluiss
- Colaborador Voluntário

-
- Mensagens: 118
- Registrado em: Ter Nov 23, 2010 15:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por gustavoluiss » Ter Set 06, 2011 00:51
UFBA) 35 estudantes estrangeiros vieram ao Brasil. 16 visitaram Manaus; 16, São Paulo e 11, Salvador. Desses estudantes, 5 visitaram Manaus e Salvador e, desses 5, 3 visitaram também São Paulo. O número de estudantes que visitaram Manaus OU São Paulo foi:
A) 29
B) 24
C) 11
D) 8
E) 5
SOLUÇÃO:
Observe o diagrama de VENN abaixo:

Podemos escrever:
x + y + 5 = 16 ; logo, x + y = 11..................................................Eq. 1
x + w + z + 3 = 16; logo, x + w + z = 13.....................................Eq. 2
t + w + 5 = 11; logo, t + w = 6.....................................................Eq. 3
x + y + z + w + t + 2 + 3 = 35; logo, x + y + z + w + t = 30........Eq. 4
Substituindo as Eq. 1 e 3, na Eq. 4, vem:
11 + z + 6 = 30; logo, z = 13.......................................................Eq. 5
Substituindo o valor de z na Eq. 2, vem:
x + w + 13 = 13; logo, x + w = 0, de onde se conclui que x = 0 e w = 0, já que x e w são inteiros positivos ou nulos.
Substituindo o valor de x encontrado acima na Eq. 1, vem: 0 + y = 11; logo, y = 11.
Observando que o número de elementos de M U SP é igual a x + y + z + w + 2 + 3, vem imediatamente, substituindo os valores: n(M U SP) = 0 + 11 + 13 + 0 + 2 + 3 = 29
Observe que n(M U SP) representa o conjunto dos estudantes que visitaram Manaus OU São Paulo, conforme foi solicitado no problema.
Portanto, a alternativa correta é a letra A.
Fonte:http://www.paulomarques.com.br/arq10-69.htm
-
gustavoluiss
- Colaborador Voluntário

-
- Mensagens: 118
- Registrado em: Ter Nov 23, 2010 15:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Conjuntos] Confusão em teoria dos conjuntos numa questão.
por Debora Bruna » Seg Jan 11, 2016 17:44
- 1 Respostas
- 8685 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 23, 2016 16:44
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 6120 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 15:44
Conjuntos
-
- [conjuntos]numeros racionais e conjuntos
por fenixxx » Ter Fev 28, 2012 21:35
- 3 Respostas
- 4541 Exibições
- Última mensagem por DanielFerreira

Sex Mar 02, 2012 00:04
Álgebra Elementar
-
- [Conjuntos] Problema de conjuntos com porcentagem
por Tibes » Qui Jan 31, 2013 14:29
- 1 Respostas
- 7807 Exibições
- Última mensagem por young_jedi

Sex Fev 01, 2013 12:39
Conjuntos
-
- [Conjuntos] Conjuntos e geometria plana
por bencz » Dom Mar 03, 2013 12:58
- 3 Respostas
- 11010 Exibições
- Última mensagem por maison_souza

Sex Nov 14, 2014 13:15
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.