• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[funções log ln exponenciais] com respostas insolúveis

[funções log ln exponenciais] com respostas insolúveis

Mensagempor da Silva » Qua Nov 30, 2016 18:24

Olá, boa noite, minha primeira vez aqui.
Esses exercícios em anexo do Medeiros da Silva ( Matemática: para os cursos de Economia...), há respostas no pé da página, mas, não consegui chegar nelas. Até aí eu estava indo muito bem, será que alguém aí conseguiria desenvolvê-las pra mim?
Desde já, obrigado.
Anexos
IMG-20161130-WA0004.jpeg
exercícios Medeiros Mat1
da Silva
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 30, 2016 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [funções exponenciais e logarítmas] com respostas insolú

Mensagempor da Silva » Dom Dez 18, 2016 17:45

Segue abaixo a página mais legível, escaneada.

exercícios medeiros mat 1 scaner.jpg
Exercícios do Medeiros mat 1 com respostas mas sem solução
da Silva
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 30, 2016 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [funções log ln exponenciais] com respostas insolúveis

Mensagempor petras » Dom Dez 18, 2016 23:39

Favor ler e respeitar as regras do fórum:

Regras do fórum:

Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios, trabalhos, provas etc.
Caso você não tenha tentado algo pois ainda não sabe como iniciar o exercício, então informe essa dificuldade.
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo;


Para não haver má interpretação em suas postagens, especialmente na precedência das operações, sempre utilize LaTeX para inserir as notações adequadas, podendo ser a partir do botão "editor de fórmulas";


Digite todo o enunciado do exercício! (além de suas tentativas e dificuldades).
O enunciado do exercício não deve ser anexado como um arquivo de imagem. Use arquivos de imagens apenas para enviar alguma figura ou ilustração que esteja presente no enunciado (ou na sua resolução) do exercício;


Não toleramos o uso do fórum para spam, pornografia, brigas entre usuários, postagem de propagandas etc;


Postar apenas um exercício ou dúvida por tópico;


Tópicos repetidos serão removidos. Por isso, antes de postar um novo tópico, faça uma busca no fórum.
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}