• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação de terceiro grau

Equação de terceiro grau

Mensagempor +Danilo2 » Sáb Out 08, 2016 18:11

Questão. Encontre as possíveis soluções da equação do terceiro grau.

x^3-3x^2 + [27(2-27) +2]x-27(-25)= 0

Ao resolver esta equação, cheguei a esse resultado abaixo.

x^3-3x^2+16825x - 454275= 0

Assim estive pensando em substituir o valor de x por 27, pois esse numero anula esses números maiores, mas não anula o valor de x^3 com  -3x^2.

Como faço para encontrar a primeira solução?
+Danilo2
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 29, 2016 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Equação de terceiro grau

Mensagempor petras » Seg Dez 12, 2016 11:17

Sua resolução está errada. O correto seria {x}^{3}-3{x}^{2}+\left[(27.-25)+2) \right]x-27(-25) = 0\\
{x}^{3}-3{x}^{2}-673x+675= 0

Por análise percebemos que 1 é raiz então podemos baixar um grau da equação:

(x-1)({x}^{2}-2x-675) = 0

Achando as raízes da funçaõ quadrática teremos x = -25 e x=27

Portanto S={-25,1,27}
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?