• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[P.I.F]Principio de Indução Finita

[P.I.F]Principio de Indução Finita

Mensagempor holandaleo » Sáb Fev 13, 2016 18:48

Olá a todos, alguém pode me ajudar com a resolução dessa questão que envolve PIF?

-Demonstrar a seguinte preposição;

x+{x}^{2}+{x}^{3}+{x}^{4}...{x}^{n}=\frac{{1-x}^{n+1}}{1-x}[para ] n\geq1,x\neq1
holandaleo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Fev 13, 2016 18:25
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [P.I.F]Principio de Indução Finita

Mensagempor adauto martins » Qui Fev 25, 2016 21:31

soma dos termos de uma PG finita de razao,q=x...
{S}_{n}=({a}_{1}({q}^{n}-1))/(q-1)...a questao apresentada nao esta correta,pois:
S=x.({x}^{n}-1))/(x-1)=x.(1-{x}^{n})/(1-x)=(x-{x}^{n+1})/(1-x)\neq (1-{x}^{n+1})/(1-x)...
logo S=x+{x}^{2}+...+{x}^{n}=x.(1-{x}^{n+1})/(1-x),p/x\neq 1,[\tex]n\succeq 0...vamos á prova por induçao...
p/n=0...S=x.(1-{x}^{0+1})/(1-x)=x.(1-x)/(1-x)=x...
p/n=1...S=x.(1-{x}^{1+1})/(1-x)=x.(1-{x}^{2})/(1-x)=x.(1+x)(1-x)/(1-x)=x.(x+1)=x+{x}^{2}...
vamos supor p/n=k..., ou seja S=x.(1-{x}^{k+1})/(1-x) verdadeira...entao...
p/n=k+1,teriamos...
S=x.(1-{x}^{(k+1)+1})/(1-x)=x.(1-{x}^{k+2})/(1-x)=x.(1-x).(1+{x}^{k+1})/(1-x)=x.(1+{x}^{(k+1)})=x+{x}^{2}+...+{x}^{k}+{x}^{k+1}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.