• Anúncio Global
    Respostas
    Exibições
    Última mensagem

número de apartamentos

número de apartamentos

Mensagempor dandara » Ter Set 23, 2014 14:48

Uma empresa de engenharia está construindo um prédio, no qual todos os andares terão o mesmo número de apartamentos. Sabe-se que o número de andares é igual ao triplo do número de apartamentos mais 2. Se o total de apartamentos nesse prédio é igual a 56, o número de apartamentos por andar que estão sendo construídos é...
dandara
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 23, 2014 14:37
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: número de apartamentos

Mensagempor nakagumahissao » Qui Set 25, 2014 02:10

Sabe-se que o número de andares é igual ao triplo do número de aptos. mais 2. Isto quer dizer que:

Seja n o número de apartamentos e a o número de andares. Tem-se que:

a = 3n + 2

Tomando-se t como sendo o total de apartamentos e considerando que o total de aptos. nesse prédio é 56, tem-se:

t = 56 = a * n = (3n + 2).n =

= 3{n}^{2} + 2n = 56

3{n}^{2} + 2n - 56 = 0

\Delta = 4 + 672 = 676

n = \frac{-2 \pm \sqrt[]{\Delta}}{6} =  \frac{-2 \pm 26}{6}

{n}_{1} = -\frac{28}{6}

{n}_{2} = \frac{24}{6} = 4

Como números negativos não nos interessam, n assume o valor de 4.

Logo, de a = 3n + 2 => a = 12 + 2 = 14

O Número de Andares é portanto 14 e o número de apartamentos por andar é 4, que é a quantidade procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59