• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial iezzi 71

Equação exponencial iezzi 71

Mensagempor BrunoLima » Sáb Nov 23, 2013 21:38

Uma ajuda aqui por favor..

8^x-3.4^x - 3.2^{x+1}+8=0

Eu tentei..

2^{3x}-3.2^{2x}-3.2^x.2=0

-3.2^{2x}-3.2^x=-2^{3x}-2^3

Daqui em diante eu tentei continua mas não deu certo.. alguma sugestão?
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor e8group » Sáb Nov 23, 2013 22:50

Neste caso tome 2^x = \lambda ,temos

\lambda^3 - \lambda^2 - 6 \lambda + 8 = 0 .Determinando as raízes positivas desta equação ,a solução para x será x = log_2 \lambda .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor BrunoLima » Sáb Nov 23, 2013 22:58

olá santhiago, não é para utilizar log, eu acredito que deva ser feita uma substituição tbm, mas transformando em uma equação de segundo grau. pois a resposta é {0,2}
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor e8group » Sáb Nov 23, 2013 23:06

Editado .

Sim é esta substituição mesmo . Fazendo 2^x= \lambda teremos

\lambda^3 -3 \lambda^2 - 6 \lambda + 8 = 0 .

É fácil ver que 1 é raiz desta equação . Dividindo a mesma por \lambda - 1 ,pode determinar as demais raízes aplicando a fórmula resolvente p/ eq. grau 2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor e8group » Sáb Nov 23, 2013 23:21

Acrescentando , como todos coeficientes são números inteiros , há de ter uma raiz que é divisora do termo independente 8 . Poderia testar 2,4,8 ,um deste números satisfaz a eq . p/ \lambda além do número 1 que verifiquemos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação exponencial iezzi 71

Mensagempor BrunoLima » Dom Nov 24, 2013 00:00

Entendi santhiago, perfeita sua explicação muito obrigado^^
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.