por JU201015 » Dom Nov 18, 2012 21:28
Uma bolinha de tênis, após se chocar com o solo, no ponto O, segue uma trajetória ao longo de quatro parábolas. A altura máxima atingida em cada uma das parábolas é 4/3 do valor da altura máxima da parábola anterior. Sabendo-se que as distâncias entre os pontos onde a bolinha toca o solo são iguais e que a equação da primeira parábola é y=-4x²+8x, a equação da quarta parábola é?
Bom, o Yv da primeira parábola, é 4 ou seja, a altura máxima atingida pela primeira parábola é 4. Se a altura da primeira é 4/3 da próxima, então a altura máxima da segunda será 3, da terceira 9/4 e da quarta 27/16.
Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8.
Concluindo, eu sei que o Yv da terceira função será 27/16 e as raízes 6 e 8. Mas não consigo montar a equação da quarta parábola. Me ajudem?
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Seg Nov 19, 2012 11:58
JU201015 escreveu:ma bolinha de tênis, após se chocar com o solo, no ponto O, segue uma trajetória ao longo de quatro parábolas. A altura máxima atingida em cada uma das parábolas é 4/3 do valor da altura máxima da parábola anterior. Sabendo-se que as distâncias entre os pontos onde a bolinha toca o solo são iguais e que a equação da primeira parábola é y=-4x²+8x, a equação da quarta parábola é?
Vamos avaliar seu desenvolvimento :
JU201015 escreveu:Bom, o Yv da primeira parábola, é 4 ou seja, a altura máxima atingida pela primeira parábola é 4. Se a altura da primeira é 4/3 da próxima, então a altura máxima da segunda será 3, da terceira 9/4 e da quarta 27/16.
Levando em conta que em cada parábola , suas distâncias são proporcionais pela razão

, Por definição de P.G , a altura máx.da última parábola , será : [Unparseable or potentially dangerous latex formula. Error 6 ] .
JU201015 escreveu:Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8.
Correto .
JU201015 escreveu:Concluindo, eu sei que o Yv da terceira função será 27/16 e as raízes 6 e 8. Mas não consigo montar a
equação da quarta parábola. Me ajudem?
Por favor , leia novamente o texto . E veja a definição de P.G .
Ressaltando que a parábola pode ser escrita na forma fatorada :

são raízes .
Não tempo + p/ dar atenção .Prometo mais tarde voltar aq , p/ concluir algumas observações .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por JU201015 » Seg Nov 19, 2012 13:27
santhiago escreveu:JU201015 escreveu:ma bolinha de tênis, após se chocar com o solo, no ponto O, segue uma trajetória ao longo de quatro parábolas. A altura máxima atingida em cada uma das parábolas é 4/3 do valor da altura máxima da parábola anterior. Sabendo-se que as distâncias entre os pontos onde a bolinha toca o solo são iguais e que a equação da primeira parábola é y=-4x²+8x, a equação da quarta parábola é?
Vamos avaliar seu desenvolvimento :
JU201015 escreveu:Bom, o Yv da primeira parábola, é 4 ou seja, a altura máxima atingida pela primeira parábola é 4. Se a altura da primeira é 4/3 da próxima, então a altura máxima da segunda será 3, da terceira 9/4 e da quarta 27/16.
Levando em conta que em cada parábola , suas distâncias são proporcionais pela razão

, Por definição de P.G , a altura máx.da última parábola , será : [Unparseable or potentially dangerous latex formula. Error 6 ] .
JU201015 escreveu:Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8.
Correto .
JU201015 escreveu:Concluindo, eu sei que o Yv da terceira função será 27/16 e as raízes 6 e 8. Mas não consigo montar a
equação da quarta parábola. Me ajudem?
Por favor , leia novamente o texto . E veja a definição de P.G .
Ressaltando que a parábola pode ser escrita na forma fatorada :

são raízes .
Não tempo + p/ dar atenção .Prometo mais tarde voltar aq , p/ concluir algumas observações .
Ok =D
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Seg Nov 19, 2012 20:01
JU201015 , boa tarde . hoje a caminho da faculdade , pensei nesta questão e há algumas observações a ser feita ,há uma possibilidade de erro na interpretação pela minha pessoa . Meu tempo etstar escasso mas gostaria de ajudar mis tarde , mas deixo a vontade os demais usuários do fórum ajudar .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Seg Nov 19, 2012 21:40
Avaliei aqui . Seu raciocínio estar parcialmente certo .Vamos começa por aqui . Como vc disse , " Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8 . "
Isto é , as raízes da quarta parábola são

.
Lembrando que podemos reescrever a equação na forma fatorada ,segue que :

.
Através do

sabemos que por um lado

.
Entretanto , sabemos que o a altura máxima de cada parábola é 4/3 da anterior . Por P.G temos que ,

.
Assim, a quarta parabola será :

.
Se você tem recursos de ver isto geometricamente ,o geogebra é muito bom . Este exercício é interessante no ponto de vista físico a trajetória que a bola faz descrito ao longo das parábolas .
Comente qualquer coisa aí .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por JU201015 » Ter Nov 20, 2012 11:13
santhiago escreveu:Avaliei aqui . Seu raciocínio estar parcialmente certo .Vamos começa por aqui . Como vc disse , " Eles disseram que as distâncias entre os pontos onde a bolinha toca o solo são iguais. Se a primeira é 0, e a segunda é 2(as raízes da função), a terceira será 4, o quarto ponto 6 e o último 8 . "
Isto é , as raízes da quarta parábola são

.
Lembrando que podemos reescrever a equação na forma fatorada ,segue que :

.
Através do

sabemos que por um lado

.
Entretanto , sabemos que o a altura máxima de cada parábola é 4/3 da anterior . Por P.G temos que ,

.
Assim, a quarta parabola será :

.
Se você tem recursos de ver isto geometricamente ,o geogebra é muito bom . Este exercício é interessante no ponto de vista físico a trajetória que a bola faz descrito ao longo das parábolas .
Comente qualquer coisa aí .
Obrigada por responder e, sorry por tomar seu tempo rsrs Mas se der, me tira umas dúvidas?
Como eu chego no gabarito que é -27/16(x-6)(x-8)? De acordo com o que eu tinha feito sobre a altura máxima de cada parábola, a altura da quarta seria 27/16. Como eu poderia encontrar "a" com a altura máxima, que é 27/16? Eu tentei igualar com Yv assim:

Se substituíssemos os valores da equação

daria certo?
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Ter Nov 20, 2012 17:35
Altura da primeira parábola :
Altura da segunda parábola :
Altura da terceira parábola :
Altura da quarta parábola :

.
Perceba que todo esse processo é oriundo de :

.
Agora calculando o

por ,

.Calculando achará

.
Desculpa , não estou conseguindo chegar no gabarito . Vou ficar te devendo esta ..
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Ter Nov 20, 2012 21:47
Santhiago,
há um lapso no enunciado da
Ju. O primeiro e o segundo toque no chão formam a primeira parábola, e ela é a maior. Então a próxima parábola (segunda) não poderá ter a altura maior que a anterior, mas de acordo com o enunciado é

.

A equação é dada por:

Portanto,

Daí,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por e8group » Qua Nov 21, 2012 06:51
Bom dia danjr5 , Muito obrigado . Realmente

, logo a

da próxima parábola será maior que dá anterior . Isto não pode ser verdade .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7523 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
-
- Equação - como montar a equação desse problema?
por _Manu » Qua Jul 04, 2012 03:37
- 7 Respostas
- 12890 Exibições
- Última mensagem por _Manu

Qui Jul 05, 2012 01:49
Sistemas de Equações
-
- [Equação polinomial] Ajuda com essa equação?
por Mkdj21 » Sáb Jan 26, 2013 16:19
- 1 Respostas
- 12406 Exibições
- Última mensagem por young_jedi

Dom Jan 27, 2013 17:15
Equações
-
- [Equação da reta] Encontrando equação paramétrica.
por Vitor Sanches » Qua Jun 26, 2013 17:54
- 0 Respostas
- 6000 Exibições
- Última mensagem por Vitor Sanches

Qua Jun 26, 2013 17:54
Geometria Analítica
-
- Equação - Como resolver problema com equação
por macedo1967 » Seg Set 25, 2017 10:13
- 3 Respostas
- 8525 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:10
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.