por BrunoLima » Sáb Nov 23, 2013 21:38
Uma ajuda aqui por favor..

Eu tentei..

Daqui em diante eu tentei continua mas não deu certo.. alguma sugestão?
-
BrunoLima
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Nov 22, 2013 23:52
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando militar
- Andamento: cursando
por e8group » Sáb Nov 23, 2013 22:50
Neste caso tome

,temos

.Determinando as raízes positivas desta equação ,a solução para x será

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por BrunoLima » Sáb Nov 23, 2013 22:58
olá santhiago, não é para utilizar log, eu acredito que deva ser feita uma substituição tbm, mas transformando em uma equação de segundo grau. pois a resposta é {0,2}
-
BrunoLima
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Nov 22, 2013 23:52
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando militar
- Andamento: cursando
por e8group » Sáb Nov 23, 2013 23:06
Editado .
Sim é esta substituição mesmo . Fazendo

teremos

.
É fácil ver que

é raiz desta equação . Dividindo a mesma por

,pode determinar as demais raízes aplicando a fórmula resolvente p/ eq. grau 2 .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Sáb Nov 23, 2013 23:21
Acrescentando , como todos coeficientes são números inteiros , há de ter uma raiz que é divisora do termo independente

. Poderia testar

,um deste números satisfaz a eq . p/

além do número 1 que verifiquemos .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por BrunoLima » Dom Nov 24, 2013 00:00
Entendi santhiago, perfeita sua explicação muito obrigado^^
-
BrunoLima
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Nov 22, 2013 23:52
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando militar
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação exponencial Iezzi B.69
por BrunoLima » Sáb Nov 23, 2013 00:06
- 9 Respostas
- 5500 Exibições
- Última mensagem por Addlink1114

Ter Ago 18, 2015 04:56
Equações
-
- Equação exponencial iezzi 78
por BrunoLima » Dom Nov 24, 2013 21:31
- 3 Respostas
- 1814 Exibições
- Última mensagem por DanielFerreira

Sex Nov 29, 2013 00:13
Álgebra Elementar
-
- [Radiciação] livro 2 do Iezzi- exercicio
por edilviana » Qui Fev 16, 2012 11:39
- 1 Respostas
- 1707 Exibições
- Última mensagem por edilviana

Qui Fev 16, 2012 12:35
Álgebra Elementar
-
- Sistema de Equações exponenciais (iezzi)
por BrunoLima » Ter Nov 26, 2013 16:05
- 6 Respostas
- 3670 Exibições
- Última mensagem por e8group

Qua Nov 27, 2013 13:56
Equações
-
- Sistema de Equações exponenciais. iezzi
por BrunoLima » Ter Dez 03, 2013 16:12
- 3 Respostas
- 2104 Exibições
- Última mensagem por e8group

Qua Dez 04, 2013 14:32
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.