por Vennom » Qua Set 18, 2013 16:15
Senhores, por gentileza me ajudem com isso aqui:
(USP) Simplifique:
![\sqrt[2]{3} \sqrt[2]{3+\sqrt[2]{3}} \sqrt[2]{3+\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3-\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3} \sqrt[2]{3+\sqrt[2]{3}} \sqrt[2]{3+\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3-\sqrt[2]{3+\sqrt[2]{3}}}](/latexrender/pictures/1cec2a67a0cfed29fa364d9b4a198997.png)
Fazendo eu cheguei a isso:
![\sqrt[2]{(3)(3+\sqrt[2]{3})(3+\sqrt[2]{3+\sqrt[2]{3})}(3-\sqrt[2]{3+\sqrt[2]{3})}} \sqrt[2]{(3)(3+\sqrt[2]{3})(3+\sqrt[2]{3+\sqrt[2]{3})}(3-\sqrt[2]{3+\sqrt[2]{3})}}](/latexrender/pictures/23b21317c50f3e70e5ab9df2a471c2a4.png)
=>
=
![\sqrt[2]{(9+3\sqrt[2]{3})(9-3+\sqrt[2]{3})} \sqrt[2]{(9+3\sqrt[2]{3})(9-3+\sqrt[2]{3})}](/latexrender/pictures/d633042033fe640219efd61c667d9c49.png)
=>
=
![\sqrt[2]{(9+3\sqrt[2]{3})(6+\sqrt[2]{3})} \sqrt[2]{(9+3\sqrt[2]{3})(6+\sqrt[2]{3})}](/latexrender/pictures/da88b4ba4d376d828a6756b1bcef00b6.png)
=>
=
![\sqrt[2]{63+27\sqrt[2]{3}} \sqrt[2]{63+27\sqrt[2]{3}}](/latexrender/pictures/b7a017c5ada2ba3e612a65df155868a7.png)
=>
Enquanto o gabarito que me foi dado diz que o resultado seria:
![3\sqrt[2]{5+\sqrt[2]{3}} 3\sqrt[2]{5+\sqrt[2]{3}}](/latexrender/pictures/5f5e7b6389df69bbadb03ae53a86535d.png)
=>
![\sqrt[2]{45+9\sqrt[2]{3}} \sqrt[2]{45+9\sqrt[2]{3}}](/latexrender/pictures/3604ee945cbe7386099ab0698c90c716.png)
Vocês podem me dizer onde raios foi que eu errei? Obrigado.
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Pessoa Estranha » Qua Set 18, 2013 20:36
Olá. Você cometeu um pequeno erro de sinal. Observe o seguinte:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)](/latexrender/pictures/e89eab6fc99912f4a593ad52552b441e.png)
Pense como uma "diferença entre dois números elevados ao quadrado".
Tente fazer.... Eu realmente acredito que o erro esteja neste ponto, mas posso estar errada.
Até mais....

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Vennom » Qua Set 18, 2013 20:44
Pessoa Estranha escreveu:Olá. Você cometeu um pequeno erro de sinal. Observe o seguinte:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)](/latexrender/pictures/e89eab6fc99912f4a593ad52552b441e.png)
A regra ai não diz que é igual ao quadrado do primeiro vezes o quadrado do segundo?
Resultando no seguinte:
![(9-3+\sqrt[2]{3}) (9-3+\sqrt[2]{3})](/latexrender/pictures/399524712f54ca5abeea655608f31cf2.png)
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Pessoa Estranha » Qua Set 18, 2013 20:52
Olha, temos o seguinte:

Lembra?
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Pessoa Estranha » Qua Set 18, 2013 21:00
Você pode até fazer o processo da distributiva. Assim:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}}) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}})](/latexrender/pictures/8fc59f59a91c6ff5e46bdb52a93bb39d.png)
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Vennom » Qua Set 18, 2013 23:19
Pessoa Estranha escreveu:Você pode até fazer o processo da distributiva. Assim:
![\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}}) \left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}})](/latexrender/pictures/8fc59f59a91c6ff5e46bdb52a93bb39d.png)
Querida, se seguir a propriedade distributiva, o resultado não será exatamente o mesmo?
![6+\sqrt[2]{3} 6+\sqrt[2]{3}](/latexrender/pictures/f80cf9b7665bd683150468a02d903a05.png)
Me perdoe se eu realmente não estou conseguindo ver meu erro, mas insisto na gentileza sua de elucidá-lo para mim.
NOSSO DEUS, ME PERDOE,
MUITO OBRIGADO! VI MEU ERRO AGORA! HAHAHA, você está correta, Pessoa Estranha, foi jogo de sinal. Alí seria
![9-3-\sqrt[2]{3} 9-3-\sqrt[2]{3}](/latexrender/pictures/3eb686d0694193733895a86810393ebb.png)
Pura falta de atenção, realmente, muito obrigado pela sua gentileza em chamar minha atenção p/ o absurdo.
-
Vennom
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Fev 18, 2010 20:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Como resolver raiz dentro de raiz ?
por natyncb » Qui Abr 12, 2012 00:31
- 10 Respostas
- 13387 Exibições
- Última mensagem por LuizAquino

Sex Ago 24, 2012 07:50
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo: limite com raiz dentro de raiz
por roberto_trebor » Sáb Fev 15, 2014 20:45
- 1 Respostas
- 2124 Exibições
- Última mensagem por Man Utd

Dom Fev 16, 2014 17:58
Cálculo: Limites, Derivadas e Integrais
-
- [Radiciação] Raiz dentro de raiz
por amandasousa_m » Sex Jul 19, 2013 09:37
- 2 Respostas
- 3299 Exibições
- Última mensagem por amandasousa_m

Sex Jul 19, 2013 21:58
Equações
-
- Meter dentro da raiz
por seixas » Seg Ago 22, 2011 13:58
- 2 Respostas
- 2042 Exibições
- Última mensagem por seixas

Seg Ago 22, 2011 17:15
Polinômios
-
- Raiz dentro de raiz
por zeramalho2004 » Seg Set 21, 2009 14:45
- 2 Respostas
- 19798 Exibições
- Última mensagem por Andre+

Ter Mar 23, 2010 21:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.