• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raiz dentro de raiz

Raiz dentro de raiz

Mensagempor Vennom » Qua Set 18, 2013 16:15

Senhores, por gentileza me ajudem com isso aqui:

(USP) Simplifique: \sqrt[2]{3} \sqrt[2]{3+\sqrt[2]{3}} \sqrt[2]{3+\sqrt[2]{3+\sqrt[2]{3}}} \sqrt[2]{3-\sqrt[2]{3+\sqrt[2]{3}}}

Fazendo eu cheguei a isso: \sqrt[2]{(3)(3+\sqrt[2]{3})(3+\sqrt[2]{3+\sqrt[2]{3})}(3-\sqrt[2]{3+\sqrt[2]{3})}} =>
= \sqrt[2]{(9+3\sqrt[2]{3})(9-3+\sqrt[2]{3})} =>
= \sqrt[2]{(9+3\sqrt[2]{3})(6+\sqrt[2]{3})} =>
= \sqrt[2]{63+27\sqrt[2]{3}} =>

Enquanto o gabarito que me foi dado diz que o resultado seria: 3\sqrt[2]{5+\sqrt[2]{3}} => \sqrt[2]{45+9\sqrt[2]{3}}

Vocês podem me dizer onde raios foi que eu errei? Obrigado.
Vennom
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Fev 18, 2010 20:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Raiz dentro de raiz

Mensagempor Pessoa Estranha » Qua Set 18, 2013 20:36

Olá. Você cometeu um pequeno erro de sinal. Observe o seguinte:

\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)

Pense como uma "diferença entre dois números elevados ao quadrado".

Tente fazer.... Eu realmente acredito que o erro esteja neste ponto, mas posso estar errada.

Até mais.... ;)
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Raiz dentro de raiz

Mensagempor Vennom » Qua Set 18, 2013 20:44

Pessoa Estranha escreveu:Olá. Você cometeu um pequeno erro de sinal. Observe o seguinte:
\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right).\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)

A regra ai não diz que é igual ao quadrado do primeiro vezes o quadrado do segundo?
Resultando no seguinte:
(9-3+\sqrt[2]{3})
Vennom
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Fev 18, 2010 20:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Raiz dentro de raiz

Mensagempor Pessoa Estranha » Qua Set 18, 2013 20:52

Olha, temos o seguinte:

\left(a+b \right)\left(a-b \right)={a}^{2}-{b}^{2}

\left(a+b \right)\left(a+b \right)={a}^{2}+2(a)(b)+{b}^{2}

\left(a-b \right)\left(a-b \right)={a}^{2}-2(a)(b)+{b}^{2}

Lembra?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Raiz dentro de raiz

Mensagempor Pessoa Estranha » Qua Set 18, 2013 21:00

Você pode até fazer o processo da distributiva. Assim:

\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}})
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Raiz dentro de raiz

Mensagempor Vennom » Qua Set 18, 2013 23:19

Pessoa Estranha escreveu:Você pode até fazer o processo da distributiva. Assim:

\left(3+\sqrt[2]{3+\sqrt[2]{3}} \right)\left(3-\sqrt[2]{3+\sqrt[2]{3}} \right)=
{3}^{2}-3.\sqrt[2]{3+\sqrt[2]{3}}+3.\sqrt[2]{3+\sqrt[2]{3}}-(\sqrt[2]{3+\sqrt[2]{3}}.\sqrt[2]{3+\sqrt[2]{3}})


Querida, se seguir a propriedade distributiva, o resultado não será exatamente o mesmo?

6+\sqrt[2]{3}

Me perdoe se eu realmente não estou conseguindo ver meu erro, mas insisto na gentileza sua de elucidá-lo para mim.

NOSSO DEUS, ME PERDOE, MUITO OBRIGADO! VI MEU ERRO AGORA! HAHAHA, você está correta, Pessoa Estranha, foi jogo de sinal. Alí seria 9-3-\sqrt[2]{3}

Pura falta de atenção, realmente, muito obrigado pela sua gentileza em chamar minha atenção p/ o absurdo.
Vennom
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Fev 18, 2010 20:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}