• Anúncio Global
    Respostas
    Exibições
    Última mensagem

custo com equação do 2º grau

custo com equação do 2º grau

Mensagempor ailton barbosa » Ter Ago 07, 2012 21:25

O custo para se produzir x caixas de antibióticos é dado por C = -x2 – 4x + 2. O valor do custo máximo que o laboratório pode suportar, para continuar a produzir x caixas, em unidades monetárias, é:
7
10
8
9
6

Resolvendo a questão achei DELTA = 24, não conseguir prosseguir com a fórmula de bráskara, pois não tenho a raiz de delta como número inteiro, portanto, não chegarei a um resultado que satisfaça as opções de resposta indicadas.
ailton barbosa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Ago 07, 2012 21:12
Formação Escolar: GRADUAÇÃO
Área/Curso: ciências contábeis
Andamento: cursando

Re: custo com equação do 2º grau

Mensagempor MarceloFantini » Qua Ago 08, 2012 00:48

Para encontrar o custo máximo você deve encontrar a posição do vértice fazendo x_v = \frac{-b}{2a} = \frac{4}{2(-1)} = -2 e depois substitua:

C_{max} = -(-2)^2 -4(-2) +2 = -4 +8 +2 = +6.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.