• Anúncio Global
    Respostas
    Exibições
    Última mensagem

potência

potência

Mensagempor Bielto » Sex Mar 14, 2014 11:30

bom dia!

a fração \frac{2^9^8+4^5^0-8^3^4}{2^9^9-32^2^0+2^1^0^1} é igual a:

R: -\frac{11}{6}


Eu consegui chegar até aqui

\frac{2^9^8+4^5^0-8^3^4}{2^9^9-32^2^0+2^1^0^1} = \frac{2^9^8+(2^2)^5^0-(2^3)^3^4}{2^9^9-(2^5)^2^0+2^1^0^1} = \frac{2^9^8+2^1^0^0-2^1^0^2}{2^9^9-2^1^0^0+2^1^0^1}
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: potência

Mensagempor Russman » Sex Mar 14, 2014 19:40

Fatore o 2^{98} no numerador e no denominador da fração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: potência

Mensagempor Bielto » Sex Mar 14, 2014 20:02

Russman escreveu:Fatore o 2^{98} no numerador e no denominador da fração.


Boa noite,

Já fiz isso porem o meu resultado chegou no \[-\frac{12}{6}\]

e o gabarito é \[-\frac{11}{6}\]
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: potência

Mensagempor Russman » Sex Mar 14, 2014 22:47

2^{98}+2^{100} - 2^{102} = 2^{98}(1 + 4 - 16) = 2^{98}(-11)

Por que você calculou -12?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: potência

Mensagempor Bielto » Sex Mar 14, 2014 23:07

Boa noite Russman

Cheguei seguinte,

\[2^9^8+2^9^8.2^2-2^9^8.2^4 = 2^9^8(2^2-2^4) = -12\]

Realmente não sei onde tem o 1 hehe...
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: potência

Mensagempor Russman » Sáb Mar 15, 2014 10:30

Você está esquecendo do 2^{98}. Lembre-se que

2^{98} = 2^{98} . 1

Daí, na fatoração, deve aparecer o 1 dentro do parenteses de soma.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: potência

Mensagempor Bielto » Sáb Mar 15, 2014 13:46

Russman escreveu:Você está esquecendo do 2^{98}. Lembre-se que

2^{98} = 2^{98} . 1

Daí, na fatoração, deve aparecer o 1 dentro do parenteses de soma.


Boa tarde Russman.

Não estou lembrado dessa propriedade da fatoração.

No caso, seria pra todos serem multiplicados por 1? Ex: \[2^9^8.1+2^9^8.1.2^2.1-2^9^8.1.2^4.1\]
Editado pela última vez por Bielto em Sáb Mar 15, 2014 14:02, em um total de 1 vez.
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: potência

Mensagempor Russman » Sáb Mar 15, 2014 13:49

Sim!

Lembre-se que o número 1 é o elemento neutro da multiplicação.

Para qualquer numero a real vale que a.1=a.

Como 2^{98} é real, então lhe vale também.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: potência

Mensagempor Bielto » Sáb Mar 15, 2014 14:16

'
Deixa eu ver se entendi...

Como todos já possuíam seus multiplicadores por \[2\], para que o \[2^9^8\] não ficasse solo, vc multiplicou ele por \[1\] ?

Porque aqui \[2^9^8+2^9^8.2^2-2^9^8.2^4\] quase todos são multiplicados por \[2\] menos o primeiro \[2^9^8\], e pra não deixar ele sozinho vc usou a propriedade \[a.1=a\]

Faz sentido o que eu disse?

OBS: (Sempre que existir um exercício como esse ou até com letras, e o nº não tiver um multiplicador eu posso usar essa propriedade? \[a.1=a\] para igualar?

vlw
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: potência

Mensagempor Russman » Sáb Mar 15, 2014 14:25

Perfeito! Exatamente.

Tenho certeza que você concorda comigo, só não vê isto pq o número 2^{98} não é algo que façamos noção.

Pense comigo: Vamos efetuar a soma 4+8+16, certo? É claro que 4+8+16 = 28. Né? Ok. Mas, seguindo a sua lógica iríamos fatorar essa soma da seguinte forma:

4+8+16 = 2^2+2^3 + 2^4 = 2^2 + 2^2 .2 + 2^2 . 4 = 2^2 ( 2+4) = 2^2 (6) = 24

Está errado! Sim, pois você esqueceu de colocar o 1 de 2^2 = 2^2 . 1. Veja:

4+8+16 = 2^2+2^3 + 2^4 = 2^2.1 + 2^2 .2 + 2^2 . 4 = 2^2 (1+ 2+4) = 2^2 (7) = 28

Parece pertinente, não?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: potência

Mensagempor Bielto » Sáb Mar 15, 2014 14:29

Você é simplesmente foda, respondeu a minha pergunta com um exemplo, nada melhor do que isso.

Tu é bom cara.

Valeu mesmo, de verdade.
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: potência

Mensagempor Russman » Sáb Mar 15, 2014 14:38

Obrigado! Fico feliz que tenha entendido.

Bons estudos!

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D