por Victor Gabriel » Ter Jun 18, 2013 13:48
Pessoal olha se estou certo:
questão: Mostre que se

então
![\sqrt[]{xy}\leq\frac{x+y}{2} \sqrt[]{xy}\leq\frac{x+y}{2}](/latexrender/pictures/4f00056aa4c28b46757f56403cb81cd6.png)
.
PROVA: fazendo:
![{\left(\sqrt[]{x}-\sqrt[]{y} \right)}^{2}\geq0 {\left(\sqrt[]{x}-\sqrt[]{y} \right)}^{2}\geq0](/latexrender/pictures/02ee9bc9a67bb2d3538f74218d5cc549.png)
![x-2\sqrt[]{xy}+y\geq0\Rightarrow x+y\leq2\sqrt[]{xy}\Rightarrow\sqrt[]{xy}\leq\frac{x+y}{2} x-2\sqrt[]{xy}+y\geq0\Rightarrow x+y\leq2\sqrt[]{xy}\Rightarrow\sqrt[]{xy}\leq\frac{x+y}{2}](/latexrender/pictures/5be3a58bbddd623f8b6bef3848c7cb5b.png)
estou certo ou não?
-
Victor Gabriel
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Dom Abr 14, 2013 20:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: estudante
- Andamento: cursando
Voltar para Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.