• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Qui Out 15, 2020 16:14

mostre que entre dois numeros racionais,existem infinitos numeros irracionais.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qui Out 15, 2020 16:31

de fato,pois
tomemos o numero \sqrt[k]{{p}_{j}},{p}_{j}numero primo...p/k,j\in N que é um numero irracional

temos que

{p}_{j}-1\prec \sqrt[k]{{p}_{j}}\prec {p}_{j}\Rightarrow

(p-1)/q\prec({p}_{j}-1)/q\prec \sqrt[k]{{p}_{j}}/q\prec {p}_{j}/q \prec p/q...

p/{p}_{j}\prec p,p\in Q

e

p,q primos entre si...

analogo p/ entre dois irracionais,existem infinitos racionais(fica como exercicio)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qui Out 15, 2020 18:38

a soluçao acima apresenta esta incorreta,vamos a soluçao correta.
tomemos,como visto acima
r\prec \sqrt[k]{{p}_{j}}\prec p
para p,r racionais...logo,podemos ter:

\sqrt[k]{{p}_{j}}-1\prec \sqrt[k]{{p}_{j}}\prec{p}_{j}...

(r-1)/q\prec(\sqrt[k]{{p}_{j}}-1)/q\prec \sqrt[k]{{p}_{j}}/q\prec {p}_{j}/q\prec p/q
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.