por armando » Seg Jun 20, 2016 15:06
Olá a todos.
Desejava ajuda para a seguinte questão.
Dois números do sistema decimal representam-se por 7 e 4 = 74, em dois sistemas cujas bases diferem entre si de três unidades. Sabendo que a soma dos referidos números em decimal é 99, determinar aquelas outras duas bases.
Sei que a solução é: 5 e 8.
Mas gostaria de saber como equacionar o problema para chegar nas ditas soluções.
Grato a quem resolver ou apontar um bom método de resolução.
Armando
-
armando
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Abr 01, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Sáb Jul 09, 2016 14:30
Olá Armando, boa tarde!!
Sabemos que o número 74 deve pertencer a bases maiores que o SETE, pois ao representar um número na base 7 o sete não deve figurar; isto posto, vamos partir da primeira possibilidade, que é a base 8, para representá-lo na base decimal.

Ou seja, 74 na base octal corresponde ao 60 na base decimal. Com isso, podemos encontrar o outro número já que sabemos que a soma em base decimal vale 99. Segue,

Afim de confirmar se estamos na base correcta, devemos verificar se o número 39 na base 5 (8 - 3) é escrito com 7 e 4. Faça isso e diga o que concluiu!
Qualquer dúvida, retorne!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistema de Numeração (converte bases)
por 91disakai » Qua Set 26, 2012 11:26
- 6 Respostas
- 4309 Exibições
- Última mensagem por 91disakai

Qua Set 26, 2012 15:19
Álgebra Elementar
-
- Adição de bases iguais expoentes diferentes
por Boaz » Sex Fev 07, 2014 00:24
- 9 Respostas
- 26363 Exibições
- Última mensagem por Cleyson007

Dom Fev 14, 2016 15:50
Álgebra Elementar
-
- SISTEMAS DE NUMERAÇÃO
por metalll666 » Qua Jan 12, 2011 00:49
- 0 Respostas
- 1518 Exibições
- Última mensagem por metalll666

Qua Jan 12, 2011 00:49
Progressões
-
- Número de divisores e Sistemas de Numeração
por Gustavo R » Sáb Ago 13, 2011 18:05
- 7 Respostas
- 5275 Exibições
- Última mensagem por Molina

Sáb Ago 20, 2011 19:45
Álgebra Elementar
-
- [Bases/Dimensao] Achar o vetor que falta da Base
por ewald » Ter Abr 03, 2012 23:31
- 3 Respostas
- 2949 Exibições
- Última mensagem por LuizAquino

Qua Abr 04, 2012 17:50
Introdução à Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.