• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão concurso

Questão concurso

Mensagempor JovaniSouza » Ter Jul 29, 2014 00:37

Ex: Medeiros, que é auxiliar de farmácia, ficará três dias de plantão, na mesma semana (de segunda a sexta). Se a escala de plantões é sempre feita por sorteio, calcule a probabilidade de que Medeiros, nesta semana, não fique de plantão em dias consecutivos:
Resposta: 1/10
Como chego nesse resultado?
Obrigado!
JovaniSouza
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jul 17, 2014 10:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Questão concurso

Mensagempor Pessoa Estranha » Ter Jul 29, 2014 10:56

Olá!

Para resolver este exercício, acho que há várias maneiras, mas eu pensei na seguinte, talvez não muito esclarecedora.

Dias da semana: S1 T Q1 Q2 S2 (vamos representar assim);

1º caso - três dias consecutivos. Podemos ter: S1TQ1, TQ1Q2, Q1Q2S2 (3 possibilidades);
2º caso - dois dias consecutivos (Segunda, Terça e um dia qualquer). Podemos ter: S1TQ2, S1TS2 (2 possibilidades);
3º caso - dois dias consecutivos (Terça, Quarta e um dia qualquer). Podemos ter: TQ1S2 (1 possibilidade);
4º caso - dois dias consecutivos (Quarta, Quinta e um dia qualquer). Podemos ter: S1Q1Q2 (1 possibilidade);
5º caso - dois dias consecutivos (Quinta, Sexta e um dia qualquer). Podemos ter: S1Q2S2, TQ2S2 (2 possibilidades);
6º caso - dias não consecutivos (observe que só há uma opção: Segunda, Quarta e Sexta). Podemos ter: S1Q1S2 (1 possibilidade);

Logo, 3 + 2 + 1 + 1 + 2 + 1 = 10 possibilidades de plantão na semana. Como há somente uma opção para dias não consecutivos, segue a resposta. Entendeu? Pode perguntar. Escrevi um tanto superficialmente só para expor a ideia. Na verdade, deve haver outras formas de se resolver isto. Com a ideia, talvez você possa pensar noutras maneiras de resolver a questão.

:-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Questão concurso

Mensagempor JovaniSouza » Ter Jul 29, 2014 12:46

Entendi. Explicando assim ficou muito fácil de entender, muito obrigado!
JovaniSouza
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jul 17, 2014 10:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.