por MathNewbie » Seg Out 08, 2012 14:33
Bom dia, estou resolvendo uma questão de álgebra linear 2 e epanquei no meio do caminho.
A questão é a seguinte:
Determinar a matriz P tal que:
![[T]\gamma=P{^{-1}}\cdot [T]\beta\cdot P [T]\gamma=P{^{-1}}\cdot [T]\beta\cdot P](/latexrender/pictures/62dcfcb8b45555e2f4e19885bee6e381.png)
, sabendo que:

;

e

.
Eu comecei a resolver e achei assim:
Para

:


Logo:
![[T]\beta =\begin{bmatrix} 1&-1 \\ 1&1 \end{bmatrix} [T]\beta =\begin{bmatrix} 1&-1 \\ 1&1 \end{bmatrix}](/latexrender/pictures/e0eec0ece8d206dc864eedb6a349b70a.png)
Agora para



Logo:
![[T]\gamma =\begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} [T]\gamma =\begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}](/latexrender/pictures/40aaefec2c7ddf881e12b29a6c64c111.png)
Foi ai aonde eu empaquei, eu estou achando que:
![P^{-1}=[T]_{\beta }^{\gamma } P^{-1}=[T]_{\beta }^{\gamma }](/latexrender/pictures/239e79927402b50d448083e2eadc8d8c.png)
Estou certo ?
Me ajudem a resolver este problema, que aparentemente me pareceu simples mas não estou conseguindo!
-
MathNewbie
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Out 08, 2012 14:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Ter Out 09, 2012 10:19
voce pode dizer que se
![[T]_{\gamma}=P^{-1}.[T]_{\beta}.P [T]_{\gamma}=P^{-1}.[T]_{\beta}.P](/latexrender/pictures/d79a02a7124ddc032f149efe08f62e57.png)
então
![P.[T]_{\gamma}=P.P^{-1}.[T]_{\beta}.P P.[T]_{\gamma}=P.P^{-1}.[T]_{\beta}.P](/latexrender/pictures/8a730c6d320724ff5b4a33073882e116.png)
mais

então
![P.[T]_{\gamma}=[T]_{\beta}.P P.[T]_{\gamma}=[T]_{\beta}.P](/latexrender/pictures/9b3b6e1438104b32e0a4015629b96787.png)
tente determinar P apartir disto
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MathNewbie » Ter Out 09, 2012 13:19
young_jedi escreveu:voce pode dizer que se
![[T]_{\gamma}=P^{-1}.[T]_{\beta}.P [T]_{\gamma}=P^{-1}.[T]_{\beta}.P](/latexrender/pictures/d79a02a7124ddc032f149efe08f62e57.png)
então
![P.[T]_{\gamma}=P.P^{-1}.[T]_{\beta}.P P.[T]_{\gamma}=P.P^{-1}.[T]_{\beta}.P](/latexrender/pictures/8a730c6d320724ff5b4a33073882e116.png)
mais

então
![P.[T]_{\gamma}=[T]_{\beta}.P P.[T]_{\gamma}=[T]_{\beta}.P](/latexrender/pictures/9b3b6e1438104b32e0a4015629b96787.png)
tente determinar P apartir disto
Obrigado, por esse método fica mais fácil acharmos P.
No final acredito que P seja a matriz da transformada, pois
![[T]_{\gamma} [T]_{\gamma}](/latexrender/pictures/c3ff5cd975736bd32d2683f7c0e25e55.png)
e
![[T]_{\beta} [T]_{\beta}](/latexrender/pictures/f2f8898940de3f214f7a23c87a4c7b36.png)
são iguais. Ainda não resolvi pois estou ocupado no momento mas acredito que seja a saída mais fácil.
Vlw!
-
MathNewbie
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Out 08, 2012 14:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Matriz transformada em sistema
por Claudin » Qui Fev 16, 2012 18:17
- 4 Respostas
- 1885 Exibições
- Última mensagem por Claudin

Qui Fev 16, 2012 20:20
Matrizes e Determinantes
-
- Duvida para achar uma Matriz X
por njaneto » Qua Mar 18, 2015 12:43
- 3 Respostas
- 5881 Exibições
- Última mensagem por Cleyson007

Qua Mar 18, 2015 22:55
Matrizes e Determinantes
-
- Nao consigo achar a forma reduzida da matriz..
por PeIdInHu » Seg Jun 14, 2010 23:07
- 1 Respostas
- 2487 Exibições
- Última mensagem por PeIdInHu

Seg Jun 14, 2010 23:55
Matrizes e Determinantes
-
- [TRANSFORMADA DE LAPLACE]
por liviabgomes » Qui Dez 01, 2011 15:19
- 1 Respostas
- 1147 Exibições
- Última mensagem por LuizAquino

Seg Dez 05, 2011 10:19
Cálculo: Limites, Derivadas e Integrais
-
- Transformada de Laplace
por Russman » Sex Mai 04, 2012 01:13
- 2 Respostas
- 1492 Exibições
- Última mensagem por pvgomes07

Sex Ago 10, 2012 13:11
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.