• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformada em R - Achar a Matriz P

Transformada em R - Achar a Matriz P

Mensagempor MathNewbie » Seg Out 08, 2012 14:33

Bom dia, estou resolvendo uma questão de álgebra linear 2 e epanquei no meio do caminho.
A questão é a seguinte:
Determinar a matriz P tal que: [T]\gamma=P{^{-1}}\cdot [T]\beta\cdot P , sabendo que: T(x,y)=(x-y,x+y) ; \beta =\left \{ (1,0),(0,1) \right \} e \gamma =\left \{ (1,-1),(1,1) \right \}.

Eu comecei a resolver e achei assim:

Para \beta:
T(1,0)=(1,1)=1\cdot (1,0)+1\cdot (0,1)
T(0,1)=(-1,1)=-1\cdot (1,0)+1\cdot (0,1)

Logo: [T]\beta =\begin{bmatrix} 1&-1 \\ 1&1 \end{bmatrix}

Agora para \gamma
T(1,-1)=(2,0)=1\cdot (1,-1)+1\cdot (1,1)
T(1,1)=(0,2)=-1\cdot (1,-1)+1\cdot (1,1)

Logo:[T]\gamma =\begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}

Foi ai aonde eu empaquei, eu estou achando que: P^{-1}=[T]_{\beta }^{\gamma }
Estou certo ?

Me ajudem a resolver este problema, que aparentemente me pareceu simples mas não estou conseguindo!
MathNewbie
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 08, 2012 14:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Transformada em R - Achar a Matriz P

Mensagempor young_jedi » Ter Out 09, 2012 10:19

voce pode dizer que se

[T]_{\gamma}=P^{-1}.[T]_{\beta}.P

então

P.[T]_{\gamma}=P.P^{-1}.[T]_{\beta}.P

mais P.P^{-1}=I

então

P.[T]_{\gamma}=[T]_{\beta}.P

tente determinar P apartir disto
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Transformada em R - Achar a Matriz P

Mensagempor MathNewbie » Ter Out 09, 2012 13:19

young_jedi escreveu:voce pode dizer que se

[T]_{\gamma}=P^{-1}.[T]_{\beta}.P

então

P.[T]_{\gamma}=P.P^{-1}.[T]_{\beta}.P

mais P.P^{-1}=I

então

P.[T]_{\gamma}=[T]_{\beta}.P

tente determinar P apartir disto


Obrigado, por esse método fica mais fácil acharmos P.
No final acredito que P seja a matriz da transformada, pois [T]_{\gamma} e [T]_{\beta} são iguais. Ainda não resolvi pois estou ocupado no momento mas acredito que seja a saída mais fácil.

Vlw!
MathNewbie
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 08, 2012 14:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: