• Anúncio Global
    Respostas
    Exibições
    Última mensagem

transformação linear

transformação linear

Mensagempor p1a2u3lo » Dom Set 18, 2016 11:08

Mostrar que a transformacão linear A : R2 R3 A(x; y) = (x + y, x - y, y) e injetiva e
obter uma inversa a esquerda linear.
p1a2u3lo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 18, 2016 10:50
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: transformação linear

Mensagempor adauto martins » Qua Jan 11, 2017 14:47

para que A:{\Re}^{2}\rightarrow {\Re}^{3},teremos q. ter A(x,y)=(0,0,0),x=y=0...
de fato,
A(x,y)=(x+y,x-y,y)=(0,0,0)\Rightarrow 

x+y=0

x-y=0

y=0

\Rightarrow x=y=0...

para se ter uma inversa,qquer q. seja a multiplicaçao(a direita ou esquerda),deve-se mostrar q.A é sobrejetiva...

seja v=(a.(x+y),b(x-y),c.y)=x.(a+b)+y.(a-b+c)\Rightarrow [a(1,1,0),b(1,-1,0),c(0,0,1)] é uma base p/ IM(A)...logo dim(IM)=3...A é sobrejetiva....portanto admite inversa...entao:
{A}^{-1}.A=I......calcule {A}^{-1},como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: transformação linear

Mensagempor adauto martins » Qui Jan 12, 2017 12:00

uma correçao:
a transf.A:{\Re}^{2}\rightarrow {\Re}^{3},nao é sobrejetiva,pois:
v=(x+y,x-y,y)=x(1,1,0)+y(1,-1,0)\Rightarrow [(1,1,0),(1,-1,0)] é uma base de IM(A),logo
dim(IM)=2\neq 3,portanto nao é sobrejetiva...
logo admite,por ser injetiva somente multiplicaçao á esquerda de A...
\exists {A}^{-1}/ {A}^{-1}.A={I}_{({\Re}^{2})}......
\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix}.
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1  \\
   1 & 0  
\end{pmatrix}=
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}
bom ai agora é achar os valores de a,b,c,d...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.